Dendrimer-Based Nanodrugs for Chemodynamic Therapy of Tumors

IF 4 Q2 ENGINEERING, BIOMEDICAL Advanced Nanobiomed Research Pub Date : 2024-02-17 DOI:10.1002/anbr.202300149
Caiyun Zhang, Yunqi Guo, Mingwu Shen, Xiangyang Shi
{"title":"Dendrimer-Based Nanodrugs for Chemodynamic Therapy of Tumors","authors":"Caiyun Zhang,&nbsp;Yunqi Guo,&nbsp;Mingwu Shen,&nbsp;Xiangyang Shi","doi":"10.1002/anbr.202300149","DOIUrl":null,"url":null,"abstract":"<p>To realize precise tumor treatment, chemodynamic therapy (CDT) that utilizes metal element to trigger Fenton or Fenton-like reaction to generate cytotoxic hydroxyl radicals in tumor region has been widely investigated. Recently, the dendrimers featured with abundant surface functional groups and excellent biocompatibility are regarded as promising carriers of metal elements for tumor delivery. Much effort has been devoted to design dendrimer-based nanodrugs for CDT and CDT-involved synergistic therapy of tumors. Herein, the recent advances in the construction of dendrimer-based nanodrugs (in most cases, poly(amidoamine) dendrimers) for CDT, CDT/chemotherapy, CDT/phototherapy, CDT/gene therapy, or CDT-involved multimodal therapy are reviewed. Furthermore, the future perspectives with regard to the development of dendrimer-based nanodrugs for CDT-involved tumor treatment are also briefly discussed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300149","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To realize precise tumor treatment, chemodynamic therapy (CDT) that utilizes metal element to trigger Fenton or Fenton-like reaction to generate cytotoxic hydroxyl radicals in tumor region has been widely investigated. Recently, the dendrimers featured with abundant surface functional groups and excellent biocompatibility are regarded as promising carriers of metal elements for tumor delivery. Much effort has been devoted to design dendrimer-based nanodrugs for CDT and CDT-involved synergistic therapy of tumors. Herein, the recent advances in the construction of dendrimer-based nanodrugs (in most cases, poly(amidoamine) dendrimers) for CDT, CDT/chemotherapy, CDT/phototherapy, CDT/gene therapy, or CDT-involved multimodal therapy are reviewed. Furthermore, the future perspectives with regard to the development of dendrimer-based nanodrugs for CDT-involved tumor treatment are also briefly discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肿瘤化学动力疗法的树枝状聚合物纳米药物
为实现肿瘤的精准治疗,利用金属元素引发芬顿或类芬顿反应,从而在肿瘤区域产生具有细胞毒性的羟基自由基的化学动力学疗法(CDT)已被广泛研究。最近,具有丰富表面官能团和良好生物相容性的树枝状聚合物被认为是很有前景的肿瘤金属元素递送载体。人们致力于设计基于树枝状聚合物的纳米药物,用于 CDT 和 CDT 参与的肿瘤协同治疗。本文综述了最近在构建用于 CDT、CDT/化疗、CDT/光疗、CDT/基因治疗或 CDT 参与的多模式治疗的树枝状聚合物基纳米药物(大多数情况下为聚(氨基胺)树枝状聚合物)方面取得的进展。此外,还简要讨论了开发用于 CDT 相关肿瘤治疗的树枝状聚合物纳米药物的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
期刊最新文献
Masthead Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor Cover Picture Masthead Advances in Additive Manufactured Scaffolds Mimicking the Osteochondral Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1