Efficient Iterative Solution of Combined Source Integral Equation Using Characteristic Basis Function Method With Initial Guess

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-03-28 DOI:10.1109/JMMCT.2024.3382725
Zhiwen Dong;Xinlei Chen;Fan Gao;Changqing Gu;Zhuo Li;Wu Yang;Weibing Lu
{"title":"Efficient Iterative Solution of Combined Source Integral Equation Using Characteristic Basis Function Method With Initial Guess","authors":"Zhiwen Dong;Xinlei Chen;Fan Gao;Changqing Gu;Zhuo Li;Wu Yang;Weibing Lu","doi":"10.1109/JMMCT.2024.3382725","DOIUrl":null,"url":null,"abstract":"Using only the RWG functions, the combined source integral equation (CSIE) with weak form combined source condition can achieve fine accuracy and fast iterative convergence for conductor objects. However, compared with a conventional integral equation in the method of moments (MoM), the conventional CSIE involves more matrices and more complex numerical processing, and these make the CSIE inefficient, especially for multiple excitation problems. In this article, a characteristic basis function (CBF)-based CSIE with initial guess is proposed to mitigate this problem. The CBF is employed to reduce the number of unknowns as well as the storage consumptions and iteration time. In the meantime, an initial guess especially for CBFs is proposed to reduce iterations when solving multiple excitation problems. Numerical results are given to demonstrate the performance of the proposed method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"142-148"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10483099/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Using only the RWG functions, the combined source integral equation (CSIE) with weak form combined source condition can achieve fine accuracy and fast iterative convergence for conductor objects. However, compared with a conventional integral equation in the method of moments (MoM), the conventional CSIE involves more matrices and more complex numerical processing, and these make the CSIE inefficient, especially for multiple excitation problems. In this article, a characteristic basis function (CBF)-based CSIE with initial guess is proposed to mitigate this problem. The CBF is employed to reduce the number of unknowns as well as the storage consumptions and iteration time. In the meantime, an initial guess especially for CBFs is proposed to reduce iterations when solving multiple excitation problems. Numerical results are given to demonstrate the performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用带初始猜测的特征基函数法高效迭代求解组合源积分方程
仅使用 RWG 函数,具有弱形式组合源条件的组合源积分方程(CSIE)就能实现导体对象的高精度和快速迭代收敛。然而,与矩量法(MoM)中的传统积分方程相比,传统 CSIE 涉及更多矩阵和更复杂的数值处理,这使得 CSIE 效率低下,尤其是在多激励问题上。本文提出了一种基于特征基函数(CBF)的 CSIE(带初始猜测),以缓解这一问题。采用 CBF 可以减少未知数的数量、存储消耗和迭代时间。同时,还提出了一种特别适用于 CBF 的初始猜测,以减少求解多重激励问题时的迭代次数。给出的数值结果证明了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1