Physio-mechanical and micro-structural properties of cost-effective waste eggshell-based self-healing bacterial concrete

Zerihun Mamo Asamenew, Fikreyesus Demeke Cherkos
{"title":"Physio-mechanical and micro-structural properties of cost-effective waste eggshell-based self-healing bacterial concrete","authors":"Zerihun Mamo Asamenew,&nbsp;Fikreyesus Demeke Cherkos","doi":"10.1016/j.clema.2024.100246","DOIUrl":null,"url":null,"abstract":"<div><p>Concrete is versatile but prone to cracking, which weakens its strength and durability. Self-healing concrete can automatically repair cracks, thereby preventing their occurrence. Previous studies have focused on improving self-healing efficiency in concrete to regulate cracks and minimize their effects. Unfortunately, the initial cost of self-healing concrete concerning calcite precipitation by bacterial actions is high. The current study implemented cost-reduction measures by synthesizing calcium lactate from waste eggshells and lactic acid using a more affordable bacterial growth medium made of yeast extract and molasses. To make self-healing concrete specimens, a mixture of OPC, sand, gravel, water, calcium lactate, and Bacillus subtilis bacterial solution was mixed directly at a concentration of (9.84 x 10<sup>6</sup> and 4.56 x 10<sup>8</sup>) cells/mL. The study found that the workability of bacterial concrete exceeds that of conventional concrete, attributed to the addition of calcium lactate, which acts as a retarding agent and improves the mix's fluidity. Over a 28-day curing period, bacterial concrete with a dosage of 20 mL at a concentration of 9.84 x 10<sup>6</sup> cells/mL enhanced compressive strength by 14.37 % and reduced water absorption by 23.05 %. This may be due to the calcite precipitation by bacteria that fills voids and micro-cracks inside the concrete matrix. The study also discovered that cracks smaller than 0.5 mm were fully healed within 14 days due to calcite formation produced by bacterial activity. Images from scanning electron microscopes and X-ray diffraction verified the existence of calcite in these cracks. Additionally, the current study highlighted cost reductions in waste eggshell-based self-healing bacterial concrete compared to other study-related findings. Overall, the study emphasizes the advantages of using bacterial self-healing concrete: eco-friendly, cost-effective, enhances workability, strength, and durability, and can autonomously repair cracks without human intervention.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"12 ","pages":"Article 100246"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772397624000303/pdfft?md5=5abb8af91922abc5e7d5a547eaf1cc31&pid=1-s2.0-S2772397624000303-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397624000303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete is versatile but prone to cracking, which weakens its strength and durability. Self-healing concrete can automatically repair cracks, thereby preventing their occurrence. Previous studies have focused on improving self-healing efficiency in concrete to regulate cracks and minimize their effects. Unfortunately, the initial cost of self-healing concrete concerning calcite precipitation by bacterial actions is high. The current study implemented cost-reduction measures by synthesizing calcium lactate from waste eggshells and lactic acid using a more affordable bacterial growth medium made of yeast extract and molasses. To make self-healing concrete specimens, a mixture of OPC, sand, gravel, water, calcium lactate, and Bacillus subtilis bacterial solution was mixed directly at a concentration of (9.84 x 106 and 4.56 x 108) cells/mL. The study found that the workability of bacterial concrete exceeds that of conventional concrete, attributed to the addition of calcium lactate, which acts as a retarding agent and improves the mix's fluidity. Over a 28-day curing period, bacterial concrete with a dosage of 20 mL at a concentration of 9.84 x 106 cells/mL enhanced compressive strength by 14.37 % and reduced water absorption by 23.05 %. This may be due to the calcite precipitation by bacteria that fills voids and micro-cracks inside the concrete matrix. The study also discovered that cracks smaller than 0.5 mm were fully healed within 14 days due to calcite formation produced by bacterial activity. Images from scanning electron microscopes and X-ray diffraction verified the existence of calcite in these cracks. Additionally, the current study highlighted cost reductions in waste eggshell-based self-healing bacterial concrete compared to other study-related findings. Overall, the study emphasizes the advantages of using bacterial self-healing concrete: eco-friendly, cost-effective, enhances workability, strength, and durability, and can autonomously repair cracks without human intervention.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于成本效益型废弃蛋壳的自愈合细菌混凝土的物理力学性能和微观结构特性
混凝土用途广泛,但容易开裂,从而削弱其强度和耐久性。自愈合混凝土可以自动修复裂缝,从而防止裂缝的产生。以往的研究侧重于提高混凝土的自愈效率,以调节裂缝并将其影响降至最低。遗憾的是,由于细菌作用导致方解石析出,自愈合混凝土的初始成本较高。目前的研究采取了降低成本的措施,利用更经济实惠的酵母提取物和糖蜜制成的细菌生长培养基,从废弃蛋壳和乳酸中合成乳酸钙。为了制作自愈合混凝土试件,将 OPC、砂、砾石、水、乳酸钙和枯草芽孢杆菌细菌溶液的混合物以(9.84 x 106 和 4.56 x 108)个细胞/毫升的浓度直接混合。研究发现,细菌混凝土的工作性超过了传统混凝土,这要归功于添加了乳酸钙,乳酸钙可作为缓凝剂,改善混合料的流动性。在 28 天的养护期内,细菌混凝土的用量为 20 mL,浓度为 9.84 x 106 cells/mL,抗压强度提高了 14.37%,吸水率降低了 23.05%。这可能是由于细菌析出的方解石填充了混凝土基体内部的空隙和微裂缝。研究还发现,由于细菌活动产生了方解石,小于 0.5 毫米的裂缝在 14 天内完全愈合。扫描电子显微镜和 X 射线衍射的图像证实了这些裂缝中方解石的存在。此外,与其他相关研究结果相比,本研究强调了基于废弃蛋壳的自愈合细菌混凝土的成本降低。总之,本研究强调了使用细菌自愈合混凝土的优势:生态友好、成本效益高、可提高工作性、强度和耐久性,并且无需人工干预即可自主修复裂缝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
Investigation of the influence of crushed sand on carbonation of Mortar: Physical and microstructural analysis Biodegradable natural polymers and fibers for 3D printing: A holistic perspective on processing, characterization, and advanced applications Experimental study of phase change material (PCM) biochar composite for net-zero built environment applications Research trends on thermochromic asphalt mixtures functionalization: Bibliometric analysis and review Synergistic impact of geopolymer binder and recycled coarse aggregates on the performance of concrete masonry units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1