In order to avoid the complicated process of capturing carbon dioxide (CO2) and embedding it underground, a fast CO2 capture technique that allows for onsite elimination is required. This study investigates the potential of using electric/microwave arc plasma with metals to enhance CO2 decomposition, which normally does not occur without ionization. The research explores the rapid interactions between various metals and CO2 under atmospheric pressure. In the experimental setup, metals such as gold, copper, aluminum, magnesium, iron, zinc, titanium, and tungsten are exposed to microwaves to induce arc plasma in a controlled chamber. These interactions are analyzed using advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, UV–Vis spectroscopy, and photoluminescence (PL) spectroscopy. Gas amount and content are monitored via gas chromatography (GC). The results show that microwave arc plasma effectively disintegrates CO2, converting it into carbon and carbide. With rapid CO2 disintegration and metal-induced carbon separation, several metals can be used. While Titanium (Ti) exhibited the fastest reduction rate, Tungsten (W) was identified as the most durable candidate due to its superior thermal stability and resistance to degradation. These findings suggest that electric/microwave arc plasma technology presents a promising and efficient method for CO2 reduction, with potential implications for climate change mitigation strategies.
扫码关注我们
求助内容:
应助结果提醒方式:
