Optimizing levofloxacin decontamination in aquatic environment: Iron-modified biochar in heterogeneous Fenton processes with peroxide and persulfate

IF 5.5 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Advances Pub Date : 2024-04-08 DOI:10.1016/j.ceja.2024.100602
Antonio Faggiano , Oriana Motta , Maurizio Carotenuto , Maria Ricciardi , Antonino Fiorentino , Antonio Proto
{"title":"Optimizing levofloxacin decontamination in aquatic environment: Iron-modified biochar in heterogeneous Fenton processes with peroxide and persulfate","authors":"Antonio Faggiano ,&nbsp;Oriana Motta ,&nbsp;Maurizio Carotenuto ,&nbsp;Maria Ricciardi ,&nbsp;Antonino Fiorentino ,&nbsp;Antonio Proto","doi":"10.1016/j.ceja.2024.100602","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the effectiveness of iron-modified biochar (Fe-BC) in fixed-bed heterogeneous Fenton processes for levofloxacin (LFX) removal, a widely-used fluoroquinolone antibiotic. The objective is to optimize parameters such as pH, oxidants (H<sub>2</sub>O<sub>2</sub> and S<sub>2</sub>O<sub>8</sub><sup>2−</sup>), and biochar forms (functionalized and raw) using factorial analysis of mixed data (FAMD) and response surface methodology (RSM). These optimizations identified the ideal conditions for maximal LFX removal. The most effective removal with Fe-BC occurred at 2.5 mM H<sub>2</sub>O<sub>2</sub> and pH 7.5, while the optimal S<sub>2</sub>O<sub>8</sub><sup>2−</sup> conditions were 1.6 mM at pH 2.8. Both Fe-BC and raw biochar (RBC) showed the highest adsorption at pH 5.8. In adsorption-only, RBC and Fe-BC reduced LFX to 530 μg/L and 335 μg/L, respectively, in 60 min. The oxidation process further decreased LFX levels to between 8.9 μg/L and 0.1 μg/L using S<sub>2</sub>O<sub>8</sub><sup>2−</sup> and H<sub>2</sub>O<sub>2</sub>, respectively. The research expanded upon a kinetic model, incorporating the calculation of kinetic constants for both adsorption and oxidation processes, to deepen our understanding of the intricate degradation dynamics at play. Identifying by-products was crucial in elucidating degradation pathways. These findings are vital for environmental remediation, demonstrating the efficiency of Fe-BC in removing harmful antibiotics from water. This research highlights the potential of modified biochar in environmental clean-up, especially for water contaminated with antibiotics. The results emphasize the importance of optimizing treatment conditions for effective antibiotic removal, contributing valuable insights to the field of environmental remediation.</p></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666821124000206/pdfft?md5=8c210028520053e607ae6173fd6a18d7&pid=1-s2.0-S2666821124000206-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the effectiveness of iron-modified biochar (Fe-BC) in fixed-bed heterogeneous Fenton processes for levofloxacin (LFX) removal, a widely-used fluoroquinolone antibiotic. The objective is to optimize parameters such as pH, oxidants (H2O2 and S2O82−), and biochar forms (functionalized and raw) using factorial analysis of mixed data (FAMD) and response surface methodology (RSM). These optimizations identified the ideal conditions for maximal LFX removal. The most effective removal with Fe-BC occurred at 2.5 mM H2O2 and pH 7.5, while the optimal S2O82− conditions were 1.6 mM at pH 2.8. Both Fe-BC and raw biochar (RBC) showed the highest adsorption at pH 5.8. In adsorption-only, RBC and Fe-BC reduced LFX to 530 μg/L and 335 μg/L, respectively, in 60 min. The oxidation process further decreased LFX levels to between 8.9 μg/L and 0.1 μg/L using S2O82− and H2O2, respectively. The research expanded upon a kinetic model, incorporating the calculation of kinetic constants for both adsorption and oxidation processes, to deepen our understanding of the intricate degradation dynamics at play. Identifying by-products was crucial in elucidating degradation pathways. These findings are vital for environmental remediation, demonstrating the efficiency of Fe-BC in removing harmful antibiotics from water. This research highlights the potential of modified biochar in environmental clean-up, especially for water contaminated with antibiotics. The results emphasize the importance of optimizing treatment conditions for effective antibiotic removal, contributing valuable insights to the field of environmental remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化水生环境中左氧氟沙星的净化:铁改性生物炭与过氧化物和过硫酸盐的异质芬顿过程
本研究评估了铁改性生物炭(Fe-BC)在固定床异质芬顿工艺中去除左氧氟沙星(LFX)(一种广泛使用的氟喹诺酮类抗生素)的效果。目的是利用混合数据因子分析(FAMD)和响应面方法(RSM)优化 pH 值、氧化剂(H2O2 和 S2O82-)和生物炭形式(功能化和未加工)等参数。这些优化确定了最大程度去除 LFX 的理想条件。在 2.5 mM H2O2 和 pH 值为 7.5 的条件下,Fe-BC 的去除效果最好,而最佳的 S2O82- 条件为 1.6 mM 和 pH 值为 2.8。在 pH 值为 5.8 时,Fe-BC 和未加工生物炭(RBC)的吸附率最高。在纯吸附条件下,RBC 和 Fe-BC 在 60 分钟内分别将 LFX 降至 530 μg/L 和 335 μg/L。利用 S2O82- 和 H2O2,氧化过程可进一步将 LFX 水平分别降至 8.9 μg/L 和 0.1 μg/L 之间。这项研究扩展了动力学模型,计算了吸附和氧化过程的动力学常数,加深了我们对复杂降解动力学的理解。副产品的识别对于阐明降解途径至关重要。这些发现对于环境修复至关重要,证明了铁-生物碱在去除水中有害抗生素方面的效率。这项研究凸显了改性生物炭在环境净化方面的潜力,尤其是在受抗生素污染的水体中。研究结果强调了优化处理条件以有效去除抗生素的重要性,为环境修复领域提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
期刊最新文献
Enhanced cycling stability of silicon electrode for lithium-ion batteries by dual hydrogen bonding mediated by carboxylated carbon nanotube Microwave-assisted acid and alkali pretreatment of Napier grass for enhanced biohydrogen production and integrated biorefinery potential Innovative solar-assisted direct contact membrane distillation system: Dynamic modeling and performance analysis Enhancement of H2-water mass transfer using methyl-modified hollow mesoporous silica nanoparticles for efficient microbial CO2 reduction Enhancing photovoltaic cell design with multilayer sequential neural networks: A study on neodymium-doped ZnO nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1