Secondary-electron imaging of bulk crystalline specimens in an aberration corrected STEM

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2024-04-10 DOI:10.1016/j.ultramic.2024.113967
Sooyeon Hwang , Lijun Wu , Kim Kisslinger , Judith Yang , Ray Egerton , Yimei Zhu
{"title":"Secondary-electron imaging of bulk crystalline specimens in an aberration corrected STEM","authors":"Sooyeon Hwang ,&nbsp;Lijun Wu ,&nbsp;Kim Kisslinger ,&nbsp;Judith Yang ,&nbsp;Ray Egerton ,&nbsp;Yimei Zhu","doi":"10.1016/j.ultramic.2024.113967","DOIUrl":null,"url":null,"abstract":"<div><p>Atomic-scale electron microscopy traditionally probes thin specimens, with thickness below 100 nm, and its feasibility for bulk samples has not been documented. In this study, we explore the practicality of scanning transmission electron microscope (STEM) imaging with secondary electrons (SE), using a silicon-wedge specimen having a maximum thickness of 18 μm. We find that the atomic structure is present in the entire thickness range of the SE images although the background intensity increases moderately with thickness. The consistent intensity of secondary electron (SE) images at atomic positions and the modest increase in background intensity observed in silicon suggest a limited contribution from SEs generated by backscattered electrons, a conclusion supported by our multislice calculations. We conclude that achieving atomic resolution in SE imaging for bulk specimens is indeed attainable using aberration-corrected STEM and an aberration-corrected scanning electron microscope (SEM) may have the capacity for atomic-level resolution, holding great promise for future strides in materials research.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000469","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic-scale electron microscopy traditionally probes thin specimens, with thickness below 100 nm, and its feasibility for bulk samples has not been documented. In this study, we explore the practicality of scanning transmission electron microscope (STEM) imaging with secondary electrons (SE), using a silicon-wedge specimen having a maximum thickness of 18 μm. We find that the atomic structure is present in the entire thickness range of the SE images although the background intensity increases moderately with thickness. The consistent intensity of secondary electron (SE) images at atomic positions and the modest increase in background intensity observed in silicon suggest a limited contribution from SEs generated by backscattered electrons, a conclusion supported by our multislice calculations. We conclude that achieving atomic resolution in SE imaging for bulk specimens is indeed attainable using aberration-corrected STEM and an aberration-corrected scanning electron microscope (SEM) may have the capacity for atomic-level resolution, holding great promise for future strides in materials research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在畸变校正 STEM 中对块状晶体试样进行二次电子成像
原子尺度电子显微镜传统上用于探测厚度低于 100 纳米的薄型试样,其对大块试样的可行性尚未得到证实。在这项研究中,我们利用最大厚度为 18 μm 的硅楔试样,探索了利用二次电子(SE)进行扫描透射电子显微镜(STEM)成像的实用性。我们发现,虽然背景强度随厚度的增加而适度增加,但原子结构存在于 SE 图像的整个厚度范围内。在硅中观察到的原子位置上的二次电子(SE)图像强度一致,背景强度适度增加,这表明后向散射电子产生的 SE 的贡献有限,我们的多片计算也支持这一结论。我们的结论是,使用像差校正 STEM 确实可以实现大块试样 SE 成像的原子分辨率,而像差校正扫描电子显微镜 (SEM) 可能具有原子级分辨率的能力,这为未来材料研究的长足进步带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Exploring deep learning models for 4D-STEM-DPC data processing. Application of a novel local and automatic PCA algorithm for diffraction pattern denoising in TEM-ASTAR analysis in microelectronics. A simple and intuitive model for long-range 3D potential distributions of in-operando TEM-samples: Comparison with electron holographic tomography. EBSD and TKD analyses using inverted contrast Kikuchi diffraction patterns and alternative measurement geometries On the temporal transfer function in STEM imaging from finite detector response time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1