Sooyeon Hwang , Lijun Wu , Kim Kisslinger , Judith Yang , Ray Egerton , Yimei Zhu
{"title":"Secondary-electron imaging of bulk crystalline specimens in an aberration corrected STEM","authors":"Sooyeon Hwang , Lijun Wu , Kim Kisslinger , Judith Yang , Ray Egerton , Yimei Zhu","doi":"10.1016/j.ultramic.2024.113967","DOIUrl":null,"url":null,"abstract":"<div><p>Atomic-scale electron microscopy traditionally probes thin specimens, with thickness below 100 nm, and its feasibility for bulk samples has not been documented. In this study, we explore the practicality of scanning transmission electron microscope (STEM) imaging with secondary electrons (SE), using a silicon-wedge specimen having a maximum thickness of 18 μm. We find that the atomic structure is present in the entire thickness range of the SE images although the background intensity increases moderately with thickness. The consistent intensity of secondary electron (SE) images at atomic positions and the modest increase in background intensity observed in silicon suggest a limited contribution from SEs generated by backscattered electrons, a conclusion supported by our multislice calculations. We conclude that achieving atomic resolution in SE imaging for bulk specimens is indeed attainable using aberration-corrected STEM and an aberration-corrected scanning electron microscope (SEM) may have the capacity for atomic-level resolution, holding great promise for future strides in materials research.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"261 ","pages":"Article 113967"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000469","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic-scale electron microscopy traditionally probes thin specimens, with thickness below 100 nm, and its feasibility for bulk samples has not been documented. In this study, we explore the practicality of scanning transmission electron microscope (STEM) imaging with secondary electrons (SE), using a silicon-wedge specimen having a maximum thickness of 18 μm. We find that the atomic structure is present in the entire thickness range of the SE images although the background intensity increases moderately with thickness. The consistent intensity of secondary electron (SE) images at atomic positions and the modest increase in background intensity observed in silicon suggest a limited contribution from SEs generated by backscattered electrons, a conclusion supported by our multislice calculations. We conclude that achieving atomic resolution in SE imaging for bulk specimens is indeed attainable using aberration-corrected STEM and an aberration-corrected scanning electron microscope (SEM) may have the capacity for atomic-level resolution, holding great promise for future strides in materials research.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.