{"title":"Electrosynthesis of the Nylon-6 Precursor from Nitrate and Cyclohexanone over a Rutile TiO2 Catalyst","authors":"Lan Luo, Lingxiu Li, Liang Xu, Yifan Yan, Shanshan Zhang, Hua Zhou, Zhenhua Li, Mingfei Shao, Xue Duan","doi":"10.31635/ccschem.024.202403988","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic reduction of nitrate (NO<sub>3</sub><sup>−</sup>) to valuable organonitrogen compounds beyond ammonia is a promising strategy for mitigating the human-caused unbalance of the global nitrogen cycle. Herein, we present an electrochemical strategy for synthesizing cyclohexanone oxime (CHO), an important feedstock in nylon-6 production through hydrogenative coupling of NO<sub>3</sub><sup>−</sup> and cyclohexanone (CYC) using a rutile titanium dioxide (R-TiO<sub>2</sub>) catalyst under ambient conditions. The CHO productivity achieved 127.3 μmol cm<sup>−2</sup> h<sup>−1</sup> with a high Faradaic efficiency (FE) of 68.2% at a current density of 30 mA cm<sup>−2</sup>. Moreover, the yield of CHO reached 98.2%. We demonstrated that the electrosynthesis of CHO operated through a tandem reaction mechanism involving the in situ generation of hydroxylamine (NH<sub>2</sub>OH) from NO<sub>3</sub><sup>−</sup> reduction, followed by a spontaneous nucleophilic addition–elimination reaction between NH<sub>2</sub>OH and CYC. Additionally, we revealed that R-TiO<sub>2</sub> exhibited a superior scaling relation with a high NH<sub>2</sub>OH generation rate and excellent CYC adsorption ability, which promoted CHO production. This electrochemical strategy was also effective for the synthesis of different oximes. Finally, we designed a coupling reaction system to realize the simultaneous production of CHO and CYC by combining cathodic NO<sub>3</sub><sup>−</sup> reduction and anodic cyclohexane oxidation, demonstrating a greener and more economical approach.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202403988","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic reduction of nitrate (NO3−) to valuable organonitrogen compounds beyond ammonia is a promising strategy for mitigating the human-caused unbalance of the global nitrogen cycle. Herein, we present an electrochemical strategy for synthesizing cyclohexanone oxime (CHO), an important feedstock in nylon-6 production through hydrogenative coupling of NO3− and cyclohexanone (CYC) using a rutile titanium dioxide (R-TiO2) catalyst under ambient conditions. The CHO productivity achieved 127.3 μmol cm−2 h−1 with a high Faradaic efficiency (FE) of 68.2% at a current density of 30 mA cm−2. Moreover, the yield of CHO reached 98.2%. We demonstrated that the electrosynthesis of CHO operated through a tandem reaction mechanism involving the in situ generation of hydroxylamine (NH2OH) from NO3− reduction, followed by a spontaneous nucleophilic addition–elimination reaction between NH2OH and CYC. Additionally, we revealed that R-TiO2 exhibited a superior scaling relation with a high NH2OH generation rate and excellent CYC adsorption ability, which promoted CHO production. This electrochemical strategy was also effective for the synthesis of different oximes. Finally, we designed a coupling reaction system to realize the simultaneous production of CHO and CYC by combining cathodic NO3− reduction and anodic cyclohexane oxidation, demonstrating a greener and more economical approach.
期刊介绍:
CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.