{"title":"Guaiacol, a model lignin compound, conversion to catechol over SBA-15 and ZSM-5 catalyst in a fixed bed reactor","authors":"Vinay Shah, Uplabdhi Tyagi, Dinesh Kumar","doi":"10.1016/j.sajce.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass conversion to value added chemicals to be used as industrial platform molecules for further synthesis of commodity chemicals has opened new window for scientists. Biomass is a lignocellulosic compound and it requires technological development since biomass is a complex molecule of linear, cyclic and aromatic hydrocarbons. Lignin being aromatic in nature can beneficial for the production of phenolic hydrocarbons. In this work conversion of Guaiacol, a model lignin compound to different aromatic hydrocarbon is performed over pure silica and alumina silica catalysts e.g. SBA-15and ZSM-5 in a fixed bed catalytic reactor. SBA-15 material was synthesized at different aging time leading to improvement in surface area and pore diameter whereas ZSM-5 was pre-treated with H<sub>3</sub>PO<sub>4</sub> and KOH to modify their acidic strength. Maximum Guaiacol conversion in absence of catalyst was obtained aa 90.1 % at 550oC, 97.33 % at 550 °c in presence of SBA-15 (C) and 95.33 % in presence of P/ZSM-5, indicating the catalyst helps in enhancing the conversion, however depends on the type of catalysts and its properties like surface area, pore diameter and Lews/Bronsted acid strength. Similarly the selectivity of catechol was observed to be maximum with SBA-15 (C) as compared to other catalyst owing to its high surface area and large pore diameter. The GCMS analysis of the liquid product obtained includes Dimethyl phenol, 2-dimethoxy benzene, 2-ethyl,5-methyl phenol, catechol, Ethynylanisole and O-cresol</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"49 ","pages":"Pages 35-42"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524000489/pdfft?md5=fb82dab380930e75a6e35a66e0bacd62&pid=1-s2.0-S1026918524000489-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524000489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass conversion to value added chemicals to be used as industrial platform molecules for further synthesis of commodity chemicals has opened new window for scientists. Biomass is a lignocellulosic compound and it requires technological development since biomass is a complex molecule of linear, cyclic and aromatic hydrocarbons. Lignin being aromatic in nature can beneficial for the production of phenolic hydrocarbons. In this work conversion of Guaiacol, a model lignin compound to different aromatic hydrocarbon is performed over pure silica and alumina silica catalysts e.g. SBA-15and ZSM-5 in a fixed bed catalytic reactor. SBA-15 material was synthesized at different aging time leading to improvement in surface area and pore diameter whereas ZSM-5 was pre-treated with H3PO4 and KOH to modify their acidic strength. Maximum Guaiacol conversion in absence of catalyst was obtained aa 90.1 % at 550oC, 97.33 % at 550 °c in presence of SBA-15 (C) and 95.33 % in presence of P/ZSM-5, indicating the catalyst helps in enhancing the conversion, however depends on the type of catalysts and its properties like surface area, pore diameter and Lews/Bronsted acid strength. Similarly the selectivity of catechol was observed to be maximum with SBA-15 (C) as compared to other catalyst owing to its high surface area and large pore diameter. The GCMS analysis of the liquid product obtained includes Dimethyl phenol, 2-dimethoxy benzene, 2-ethyl,5-methyl phenol, catechol, Ethynylanisole and O-cresol
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.