An investigation of multivariate data-driven deep learning models for predicting COVID-19 variants

Akhmad Dimitri Baihaqi, Novanto Yudistira, Edy Santoso
{"title":"An investigation of multivariate data-driven deep learning models for predicting COVID-19 variants","authors":"Akhmad Dimitri Baihaqi,&nbsp;Novanto Yudistira,&nbsp;Edy Santoso","doi":"10.1016/j.health.2024.100331","DOIUrl":null,"url":null,"abstract":"<div><p>The Coronavirus Disease 2019 (COVID-19) pandemic has swept almost all parts of the world. With the increasing number of COVID-19 cases worldwide, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has mutated into various variants. Given the increasingly dangerous conditions of the pandemic, it is crucial to predict the number of COVID-19 cases. Deep Learning and Long Short-Term Memory (LSTM) have predicted disease progress with reasonable accuracy and small errors. LSTM training is used to predict confirmed cases of COVID-19 based on variants identified using the European Centre for Disease Prevention and Control (ECDC) COVID-19 dataset containing confirmed cases identified from 30 European countries. Tests were conducted using the LSTM and Bidirectional LSTM (BiLSTM) models with the addition of Recurrent Neural Network (RNN) as comparisons on hidden size and layer size. The obtained result showed that in testing hidden sizes 25, 50, 75, and 100, the RNN model provided better results, with the minimum Mean Squared Error (MSE) value of 0.01 and the Root Mean Square Error (RMSE) value of 0.012 for B.1.427/B.1.429 variant with a hidden size of 100. Further testing layer sizes 2, 3, 4, and 5 shows that the BiLSTM model provided better results, with a minimum MSE value of 0.01 and an RMSE of 0.01 for the B.1.427/B.1.429 variant with a hidden size of 100 and layer size of 2.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100331"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000339/pdfft?md5=461579c379a5f6b6fa1dc29afa8d2cf4&pid=1-s2.0-S2772442524000339-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Coronavirus Disease 2019 (COVID-19) pandemic has swept almost all parts of the world. With the increasing number of COVID-19 cases worldwide, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has mutated into various variants. Given the increasingly dangerous conditions of the pandemic, it is crucial to predict the number of COVID-19 cases. Deep Learning and Long Short-Term Memory (LSTM) have predicted disease progress with reasonable accuracy and small errors. LSTM training is used to predict confirmed cases of COVID-19 based on variants identified using the European Centre for Disease Prevention and Control (ECDC) COVID-19 dataset containing confirmed cases identified from 30 European countries. Tests were conducted using the LSTM and Bidirectional LSTM (BiLSTM) models with the addition of Recurrent Neural Network (RNN) as comparisons on hidden size and layer size. The obtained result showed that in testing hidden sizes 25, 50, 75, and 100, the RNN model provided better results, with the minimum Mean Squared Error (MSE) value of 0.01 and the Root Mean Square Error (RMSE) value of 0.012 for B.1.427/B.1.429 variant with a hidden size of 100. Further testing layer sizes 2, 3, 4, and 5 shows that the BiLSTM model provided better results, with a minimum MSE value of 0.01 and an RMSE of 0.01 for the B.1.427/B.1.429 variant with a hidden size of 100 and layer size of 2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量数据驱动的深度学习模型预测 COVID-19 变异的研究
冠状病毒病 2019(COVID-19)大流行几乎席卷了世界各地。随着全球 COVID-19 病例的增加,严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)也变异成各种变种。鉴于大流行病的情况越来越危险,预测 COVID-19 病例的数量至关重要。深度学习和长短期记忆(LSTM)可以预测疾病的进展情况,而且准确性高、误差小。LSTM 训练用于预测 COVID-19 的确诊病例,其依据是使用欧洲疾病预防和控制中心(ECDC)COVID-19 数据集确定的变体,该数据集包含从 30 个欧洲国家确定的确诊病例。测试使用 LSTM 和双向 LSTM(BiLSTM)模型,并增加了循环神经网络(RNN)作为隐藏大小和层大小的比较。结果显示,在测试隐藏大小为 25、50、75 和 100 时,RNN 模型提供了更好的结果,对于隐藏大小为 100 的 B.1.427/B.1.429 变体,最小均方误差 (MSE) 值为 0.01,均方根误差 (RMSE) 值为 0.012。进一步测试层大小 2、3、4 和 5 表明,BiLSTM 模型提供了更好的结果,B.1.427/B.1.429 变体的最小 MSE 值为 0.01,RMSE 为 0.01,隐藏大小为 100,层大小为 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
期刊最新文献
Optimized early fusion of handcrafted and deep learning descriptors for voice pathology detection and classification A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation An ensemble convolutional neural network model for brain stroke prediction using brain computed tomography images A hierarchical Bayesian approach for identifying socioeconomic factors influencing self-rated health in Japan An electrocardiogram signal classification using a hybrid machine learning and deep learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1