State-Based Opacity Verification of Networked Discrete Event Systems Using Labeled Petri Nets

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Ieee-Caa Journal of Automatica Sinica Pub Date : 2024-04-15 DOI:10.1109/JAS.2023.124128
Yifan Dong;Naiqi Wu;Zhiwu Li
{"title":"State-Based Opacity Verification of Networked Discrete Event Systems Using Labeled Petri Nets","authors":"Yifan Dong;Naiqi Wu;Zhiwu Li","doi":"10.1109/JAS.2023.124128","DOIUrl":null,"url":null,"abstract":"The opaque property plays an important role in the operation of a security-critical system, implying that pre-defined secret information of the system is not able to be inferred through partially observing its behavior. This paper addresses the verification of current-state, initial-state, infinite-step, and \n<tex>$K$</tex>\n-step opacity of networked discrete event systems modeled by labeled Petri nets, where communication losses and delays are considered. Based on the symbolic technique for the representation of states in Petri nets, an observer and an estimator are designed for the verification of current-state and initial-state opacity, respectively. Then, we propose a structure called an I-observer that is combined with secret states to verify whether a networked discrete event system is infinite-step opaque or \n<tex>$K$</tex>\n-step opaque. Due to the utilization of symbolic approaches for the state-based opacity verification, the computation of the reachability graphs of labeled Petri nets is avoided, which dramatically reduces the computational overheads stemming from networked discrete event systems.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":null,"pages":null},"PeriodicalIF":15.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500719/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The opaque property plays an important role in the operation of a security-critical system, implying that pre-defined secret information of the system is not able to be inferred through partially observing its behavior. This paper addresses the verification of current-state, initial-state, infinite-step, and $K$ -step opacity of networked discrete event systems modeled by labeled Petri nets, where communication losses and delays are considered. Based on the symbolic technique for the representation of states in Petri nets, an observer and an estimator are designed for the verification of current-state and initial-state opacity, respectively. Then, we propose a structure called an I-observer that is combined with secret states to verify whether a networked discrete event system is infinite-step opaque or $K$ -step opaque. Due to the utilization of symbolic approaches for the state-based opacity verification, the computation of the reachability graphs of labeled Petri nets is avoided, which dramatically reduces the computational overheads stemming from networked discrete event systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用标记 Petri 网对网络离散事件系统进行基于状态的不透明验证
不透明特性在安全关键型系统的运行中起着重要作用,它意味着无法通过部分观察其行为来推断系统的预定义秘密信息。本文探讨了由标记 Petri 网建模的网络离散事件系统的当前状态、初始状态、无限步和 $K$ 步不透明性的验证问题,其中考虑了通信损耗和延迟。基于在 Petri 网中表示状态的符号技术,我们设计了一个观测器和一个估计器,分别用于验证当前状态和初始状态的不透明度。然后,我们提出了一种称为 I- 观察器的结构,它与秘密状态相结合,可验证网络离散事件系统是无限步不透明还是 $K$ 步不透明。由于在基于状态的不透明验证中使用了符号方法,因此避免了计算标记 Petri 网的可达性图,从而大大减少了网络离散事件系统的计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
期刊最新文献
Inside front cover Inside back cover Back cover Front cover On Zero Dynamics and Controllable Cyber-Attacks in Cyber-Physical Systems and Dynamic Coding Schemes as Their Countermeasures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1