Shale oil development techniques and application based on ternary-element storage and flow concept in Jiyang Depression, Bohai Bay Basin, East China

IF 7 Q1 ENERGY & FUELS Petroleum Exploration and Development Pub Date : 2024-04-01 DOI:10.1016/S1876-3804(24)60030-3
Yong YANG
{"title":"Shale oil development techniques and application based on ternary-element storage and flow concept in Jiyang Depression, Bohai Bay Basin, East China","authors":"Yong YANG","doi":"10.1016/S1876-3804(24)60030-3","DOIUrl":null,"url":null,"abstract":"<div><p>The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin, East China, was proposed based on the data of more than 10 000 m cores and the production of more than 60 horizontal wells. The synergy of three elements (storage, fracture and pressure) contributes to the enrichment and high production of shale oil in Jiyang Depression. The storage element controls the enrichment of shale oil; specifically, the presence of inorganic pores and fractures, as well as laminae of lime-mud rocks, in the saline lake basin, is conducive to the storage of shale oil, and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production. The fracture element controls the shale oil flow; specifically, natural fractures act as flow channels for shale oil to migrate and accumulate, and induced fractures communicate natural fractures to form complex fracture network, which is fundamental to high production. The pressure element controls the high and stable production of shale oil; specifically, the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons, and fracturing stimulation significantly increases the elastic energy of rock and fluid, improves the imbibition replacement of oil in the pores/fractures, and reduces the stress sensitivity, guaranteeing the stable production of shale oil for a long time. Based on the ternary-element storage and flow concept, a 3D development technology was formed, with the core techniques of 3D well pattern optimization, 3D balanced fracturing, and full-cycle optimization of adjustment and control. This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 2","pages":"Pages 380-393"},"PeriodicalIF":7.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600303/pdf?md5=a30fb47b3192b25762bbb600f0c8b373&pid=1-s2.0-S1876380424600303-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380424600303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin, East China, was proposed based on the data of more than 10 000 m cores and the production of more than 60 horizontal wells. The synergy of three elements (storage, fracture and pressure) contributes to the enrichment and high production of shale oil in Jiyang Depression. The storage element controls the enrichment of shale oil; specifically, the presence of inorganic pores and fractures, as well as laminae of lime-mud rocks, in the saline lake basin, is conducive to the storage of shale oil, and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production. The fracture element controls the shale oil flow; specifically, natural fractures act as flow channels for shale oil to migrate and accumulate, and induced fractures communicate natural fractures to form complex fracture network, which is fundamental to high production. The pressure element controls the high and stable production of shale oil; specifically, the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons, and fracturing stimulation significantly increases the elastic energy of rock and fluid, improves the imbibition replacement of oil in the pores/fractures, and reduces the stress sensitivity, guaranteeing the stable production of shale oil for a long time. Based on the ternary-element storage and flow concept, a 3D development technology was formed, with the core techniques of 3D well pattern optimization, 3D balanced fracturing, and full-cycle optimization of adjustment and control. This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三元储流理念的页岩油开发技术及在华东渤海湾盆地济阳凹陷的应用
根据 10 000 多米岩心资料和 60 多口水平井的生产情况,提出了华东渤海湾盆地济阳凹陷页岩油藏的三元储流概念。储层、裂缝和压力三要素的协同作用促进了济阳凹陷页岩油的富集和高产。储量要素控制页岩油的富集,具体而言,盐湖盆地无机孔隙、裂缝以及石灰泥岩层理的存在,有利于页岩油的储量,而高的生烃能力和游离烃含量则是高产的物质基础。裂缝要素控制页岩油的流动,具体来说,天然裂缝是页岩油迁移和聚集的流动通道,诱导裂缝沟通天然裂缝,形成复杂的裂缝网络,是高产的基础。压力要素控制着页岩油的高产稳产,具体来说,高地层压力为碳氢化合物的迁移和积累提供了驱动力,压裂激励显著提高了岩石和流体的弹性能,改善了油在孔隙/裂缝中的浸润置换,降低了应力敏感性,保证了页岩油的长期稳产。基于三元储流理念,形成了以三维井型优化、三维平衡压裂、全周期优化调控为核心技术的三维开发技术。该技术有效指导了生产,为济阳凹陷页岩油大规模效益开发提供了支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
期刊最新文献
Accumulation sequence and exploration domain of continental whole petroleum system in Sichuan Basin, SW China Tectonic evolution and source rocks development of the super oil-rich Bohai Bay Basin, East China Impact of Tethyan domain evolution on the formation of petroleum systems in the Sichuan super basin, SW China Fracture-controlled fracturing mechanism and penetration discrimination criteria for thin sand-mud interbedded reservoirs in Sulige gas field, Ordos Basin, China Helium enrichment theory and exploration ideas for helium-rich gas reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1