An evaluation of the environmental impact and energy efficiency of producing geopolymer mortar with plastic aggregates

IF 5.4 Q1 ENVIRONMENTAL SCIENCES Resources, conservation & recycling advances Pub Date : 2024-04-12 DOI:10.1016/j.rcradv.2024.200216
Georgy Lazorenko , Ekaterina Kravchenko , Anton Kasprzhitskii , Elham H. Fini
{"title":"An evaluation of the environmental impact and energy efficiency of producing geopolymer mortar with plastic aggregates","authors":"Georgy Lazorenko ,&nbsp;Ekaterina Kravchenko ,&nbsp;Anton Kasprzhitskii ,&nbsp;Elham H. Fini","doi":"10.1016/j.rcradv.2024.200216","DOIUrl":null,"url":null,"abstract":"<div><p>The imperative to mitigate carbon emissions and seek sustainable alternatives to cementitious materials has driven the advancement of geopolymer binders, which are inorganic binders of aluminosilicate industrial-waste materials activated by alkaline agents. The use of geopolymers carries the potential for significant reductions in greenhouse gas emission. Furthermore, the incorporation of plastic waste as aggregates addresses not only resource conservation but also environmental sustainability. This study conducted a comprehensive life-cycle assessment of the use of geopolymers from fly ash as a precursor with polyethylene terephthalate (PET) waste as a substitute for natural aggregates. It was observed that when replacing natural aggregates with PET waste to the maximum extent, the global warming potential (GWP) in the category of emissions related to aggregate preparation increased by 16.7 %. This increase was attributed to significant emissions generated during PET processing, including activities such as washing and grinding. The total GWP to produce one cubic meter of geopolymer mixture was 643.55 kgCO<sub>2</sub>-e without PET aggregates and 667.86 kgCO<sub>2</sub>-e with maximum use of PET aggregates. The optimization of energy-intensive PET preparation processes led to a remarkable reduction of 19.63 % for production of geopolymer mixture with maximum use of PET aggregates. These findings show the potential for improved sustainability in the production of geopolymer mixtures and emphasize the critical role of optimizing the production processes in mitigating their environmental impact.</p></div>","PeriodicalId":74689,"journal":{"name":"Resources, conservation & recycling advances","volume":"22 ","pages":"Article 200216"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667378924000154/pdfft?md5=79f3a245b6ca0f8d0b0448bc23697382&pid=1-s2.0-S2667378924000154-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources, conservation & recycling advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667378924000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The imperative to mitigate carbon emissions and seek sustainable alternatives to cementitious materials has driven the advancement of geopolymer binders, which are inorganic binders of aluminosilicate industrial-waste materials activated by alkaline agents. The use of geopolymers carries the potential for significant reductions in greenhouse gas emission. Furthermore, the incorporation of plastic waste as aggregates addresses not only resource conservation but also environmental sustainability. This study conducted a comprehensive life-cycle assessment of the use of geopolymers from fly ash as a precursor with polyethylene terephthalate (PET) waste as a substitute for natural aggregates. It was observed that when replacing natural aggregates with PET waste to the maximum extent, the global warming potential (GWP) in the category of emissions related to aggregate preparation increased by 16.7 %. This increase was attributed to significant emissions generated during PET processing, including activities such as washing and grinding. The total GWP to produce one cubic meter of geopolymer mixture was 643.55 kgCO2-e without PET aggregates and 667.86 kgCO2-e with maximum use of PET aggregates. The optimization of energy-intensive PET preparation processes led to a remarkable reduction of 19.63 % for production of geopolymer mixture with maximum use of PET aggregates. These findings show the potential for improved sustainability in the production of geopolymer mixtures and emphasize the critical role of optimizing the production processes in mitigating their environmental impact.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用塑料骨料生产土工聚合物砂浆的环境影响和能源效率评估
减少碳排放和寻求水泥基材料的可持续替代品势在必行,这推动了土工聚合物粘结剂的发展。使用土工聚合物有可能显著减少温室气体排放。此外,将塑料废弃物作为骨料不仅能节约资源,还能实现环境的可持续发展。本研究对以粉煤灰为前体、聚对苯二甲酸乙二酯(PET)废料为天然骨料替代物的土工聚合物的使用进行了全面的生命周期评估。据观察,当最大限度地用 PET 废弃物替代天然集料时,与集料制备相关的排放类别中的全球升温潜能值(GWP)增加了 16.7%。这一增加归因于 PET 加工过程中产生的大量排放,包括清洗和研磨等活动。在不使用 PET 骨料的情况下,生产一立方米土工聚合物混合物的全球升温潜能值为 643.55 kgCO2-e,在最大程度使用 PET 骨料的情况下为 667.86 kgCO2-e。通过优化能源密集型 PET 制备工艺,在最大限度使用 PET 骨料的情况下,生产土工聚合物混合物的全球升温潜能值显著降低了 19.63%。这些研究结果表明,土工聚合物混合物的生产具有改善可持续性的潜力,并强调了优化生产工艺在减轻其环境影响方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources, conservation & recycling advances
Resources, conservation & recycling advances Environmental Science (General)
CiteScore
11.70
自引率
0.00%
发文量
0
审稿时长
76 days
期刊最新文献
Attitudes and preferences of the Chinese public towards products made from recycled materials: A text mining approach Decoding sustainable consumption behavior: A systematic review of theories and models and provision of a guidance framework A two-step approach to recycling hydroponics waste nutrient solutions using fertiliser drawn forward osmosis and chemical precipitation Electrolysis and waste heat utilisation in the sustainable transition of Germany's energy system Cost factors affecting the utilisation of secondary materials in the construction sector: A systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1