RT-MPTs: Process models for response-time distributions with diffusion-model kernels

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-16 DOI:10.1016/j.jmp.2024.102857
Karl Christoph Klauer, Raphael Hartmann, Constantin G. Meyer-Grant
{"title":"RT-MPTs: Process models for response-time distributions with diffusion-model kernels","authors":"Karl Christoph Klauer,&nbsp;Raphael Hartmann,&nbsp;Constantin G. Meyer-Grant","doi":"10.1016/j.jmp.2024.102857","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an extension of the widely used class of multinomial processing tree models by incorporating response times via diffusion-model kernels. Multinomial processing tree models are models of categorical data in terms of a number of cognitive and guessing processes estimating the probabilities with which each process outcome occurs. The new method allows one to estimate completion times of each process along with outcome probability and thereby provides process-oriented accounts of accuracy and latency data in all domains in which multinomial processing tree models have been applied. Furthermore, the new models are implemented hierarchically so that individual differences are explicitly accounted for and do not bias the population-level estimates. The new approach overcomes a number of shortcomings of previous extensions of multinomial models to incorporate response times. We evaluate the new method’s performance via a recovery study and simulation-based calibration. The method allows one to test hypotheses about processing architecture, and it provides an extension of traditional diffusion model analyses where multinomial models have been proposed for the modeled paradigm. We illustrate these and other benefits of the new model class using five existing data sets from recognition memory.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022249624000270/pdfft?md5=7db8ec5c88e223bf8d8bb5ba6e2cf417&pid=1-s2.0-S0022249624000270-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249624000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an extension of the widely used class of multinomial processing tree models by incorporating response times via diffusion-model kernels. Multinomial processing tree models are models of categorical data in terms of a number of cognitive and guessing processes estimating the probabilities with which each process outcome occurs. The new method allows one to estimate completion times of each process along with outcome probability and thereby provides process-oriented accounts of accuracy and latency data in all domains in which multinomial processing tree models have been applied. Furthermore, the new models are implemented hierarchically so that individual differences are explicitly accounted for and do not bias the population-level estimates. The new approach overcomes a number of shortcomings of previous extensions of multinomial models to incorporate response times. We evaluate the new method’s performance via a recovery study and simulation-based calibration. The method allows one to test hypotheses about processing architecture, and it provides an extension of traditional diffusion model analyses where multinomial models have been proposed for the modeled paradigm. We illustrate these and other benefits of the new model class using five existing data sets from recognition memory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RT-MPTs:带有扩散模型核的响应时间分布过程模型
我们提出了对广泛使用的多叉处理树模型的扩展,通过扩散模型核将响应时间纳入其中。多叉处理树模型是以若干认知和猜测过程来估计每个过程结果发生概率的分类数据模型。新方法可以估算每个过程的完成时间和结果概率,从而在所有应用了多叉处理树模型的领域中,为准确性和延迟数据提供以过程为导向的说明。此外,新模型是分层实施的,因此个体差异被明确考虑在内,不会对群体水平的估计值产生偏差。新方法克服了以往扩展多叉模型以纳入响应时间的一系列缺点。我们通过恢复研究和模拟校准评估了新方法的性能。该方法允许我们检验有关处理结构的假设,并对传统的扩散模型分析进行了扩展,在传统的扩散模型分析中,多叉模型已被提出用于建模范例。我们使用五个现有的识别记忆数据集来说明新模型类的这些和其他优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1