Elsa M. Arrázola-Vásquez , Mats Larsbo , Yvan Capowiez , Astrid Taylor , Anke M. Herrmann , Thomas Keller
{"title":"Estimating energy costs of earthworm burrowing using calorimetry","authors":"Elsa M. Arrázola-Vásquez , Mats Larsbo , Yvan Capowiez , Astrid Taylor , Anke M. Herrmann , Thomas Keller","doi":"10.1016/j.ejsobi.2024.103619","DOIUrl":null,"url":null,"abstract":"<div><p>Earthworm burrowing is essential for soil functioning in temperate climates. It is known that soil compaction hampers earthworm burrowing, but there is a lack of knowledge on how it affects the energy costs of earthworms. In the present study, we used respirometry and isothermal calorimetry to quantify earthworm respiration rates and heat dissipation in two endogeic species, <em>Aporrectodea caliginosa</em> and <em>Aporrectodea tuberculata</em>, in compacted and non-compacted soils. We put the measured respiration rates and heat dissipation in relation to the burrow volume and cast volume produced by the earthworms. We found that at higher compaction levels, respiration rates and dissipated heat increased for both studied species. The energy costs associated with burrowing were a significant fraction of the total energy costs. Our results indicate that energy costs per burrow volume increase due to compaction, and that the specific energy costs for burrowing (i.e., per gram earthworm) were lower for <em>A. tuberculata</em> than for <em>A. caliginosa</em>. Further studies are needed to confirm our results. We discuss the potential and current limitations of isothermal calorimetry as a method for direct quantification of energy costs of earthworms. There is a need for further studies that quantify how energy costs of burrowing are affected by various soil conditions, to better predict the implications of land use and soil management on soil processes and functions mediated by earthworm burrowing.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"121 ","pages":"Article 103619"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1164556324000256/pdfft?md5=19d2f111e605c24864eb4f9214b07998&pid=1-s2.0-S1164556324000256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556324000256","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Earthworm burrowing is essential for soil functioning in temperate climates. It is known that soil compaction hampers earthworm burrowing, but there is a lack of knowledge on how it affects the energy costs of earthworms. In the present study, we used respirometry and isothermal calorimetry to quantify earthworm respiration rates and heat dissipation in two endogeic species, Aporrectodea caliginosa and Aporrectodea tuberculata, in compacted and non-compacted soils. We put the measured respiration rates and heat dissipation in relation to the burrow volume and cast volume produced by the earthworms. We found that at higher compaction levels, respiration rates and dissipated heat increased for both studied species. The energy costs associated with burrowing were a significant fraction of the total energy costs. Our results indicate that energy costs per burrow volume increase due to compaction, and that the specific energy costs for burrowing (i.e., per gram earthworm) were lower for A. tuberculata than for A. caliginosa. Further studies are needed to confirm our results. We discuss the potential and current limitations of isothermal calorimetry as a method for direct quantification of energy costs of earthworms. There is a need for further studies that quantify how energy costs of burrowing are affected by various soil conditions, to better predict the implications of land use and soil management on soil processes and functions mediated by earthworm burrowing.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.