{"title":"Long-term effects of non-pharmaceutical interventions on total disease burden in parsimonious epidemiological models","authors":"Tak Fung , Jonah Goh , Ryan A. Chisholm","doi":"10.1016/j.jtbi.2024.111817","DOIUrl":null,"url":null,"abstract":"<div><p>The recent global COVID-19 pandemic resulted in governments enacting non-pharmaceutical interventions (NPIs) targeted at reducing transmission of SARS-CoV-2. But the NPIs also affected the transmission of viruses causing non-target seasonal respiratory diseases, including influenza and respiratory syncytial virus (RSV). In many countries, the NPIs were found to reduce cases of such seasonal respiratory diseases, but there is also evidence that subsequent relaxation of NPIs led to outbreaks of these diseases that were larger than pre-pandemic ones, due to the accumulation of susceptible individuals prior to relaxation. Therefore, the net long-term effects of NPIs on the total disease burden of non-target diseases remain unclear. Knowledge of this is important for infectious disease management and maintenance of public health. In this study, we shed light on this issue for the simplified scenario of a set of NPIs that prevent or reduce transmission of a seasonal respiratory disease for about a year and are then removed, using mathematical analyses and numerical simulations of a suite of four epidemiological models with varying complexity and generality. The model parameters were estimated using empirical data pertaining to seasonal respiratory diseases and covered a wide range. Our results showed that NPIs reduced the total disease burden of a non-target seasonal respiratory disease in the long-term. Expressed as a percentage of population size, the reduction was greater for larger values of the basic reproduction number and the immunity loss rate, reflecting larger outbreaks and hence more infections averted by imposition of NPIs. Our study provides a foundation for exploring the effects of NPIs on total disease burden in more-complex scenarios.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"587 ","pages":"Article 111817"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324000985","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The recent global COVID-19 pandemic resulted in governments enacting non-pharmaceutical interventions (NPIs) targeted at reducing transmission of SARS-CoV-2. But the NPIs also affected the transmission of viruses causing non-target seasonal respiratory diseases, including influenza and respiratory syncytial virus (RSV). In many countries, the NPIs were found to reduce cases of such seasonal respiratory diseases, but there is also evidence that subsequent relaxation of NPIs led to outbreaks of these diseases that were larger than pre-pandemic ones, due to the accumulation of susceptible individuals prior to relaxation. Therefore, the net long-term effects of NPIs on the total disease burden of non-target diseases remain unclear. Knowledge of this is important for infectious disease management and maintenance of public health. In this study, we shed light on this issue for the simplified scenario of a set of NPIs that prevent or reduce transmission of a seasonal respiratory disease for about a year and are then removed, using mathematical analyses and numerical simulations of a suite of four epidemiological models with varying complexity and generality. The model parameters were estimated using empirical data pertaining to seasonal respiratory diseases and covered a wide range. Our results showed that NPIs reduced the total disease burden of a non-target seasonal respiratory disease in the long-term. Expressed as a percentage of population size, the reduction was greater for larger values of the basic reproduction number and the immunity loss rate, reflecting larger outbreaks and hence more infections averted by imposition of NPIs. Our study provides a foundation for exploring the effects of NPIs on total disease burden in more-complex scenarios.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.