{"title":"Kir4.1 channel and voltage-gated calcium channel of astrocyte account for the transition dynamics of seizures.","authors":"Yu Rui, Shu Liu, Suyu Liu","doi":"10.1016/j.jtbi.2025.112082","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocytes have an important role in the indirect regulation of neuronal excitability. The abnormalities of their ion channels cause neurons to discharge abnormally, which may induce seizures. The inwardly rectifying potassium channel 4.1 (Kir4.1 channel) and the voltage-gated calcium channel (VGCC) of an astrocyte play important roles in maintaining the homeostasis of these potassium and calcium ions, and have been found to be associated with seizures. However, the underlying mechanisms by which they induce seizures remain unclear. This paper established a neuron-astrocyte network model, which is a model consisting of a neuron and an astrocyte, to explore some mechanisms of epileptic seizures. Through a series of simulations based on this model, the results showed that low conductance of Kir4.1 channel can induce spontaneous periodic epileptic activity (SPEA) whereas higher conductance results in spontaneous periodic bursting event (SPBE) and high-frequency tonic discharges (HFTD). The abnormalities of VGCC also lead to the generation of SPEA and SPBE. As the changes of potassium concentration in the largest nearby reservoir which is analogous to a bath solution that contains a specific concentration of potassium, SPEA can undergo a process from appearance to disappearance. Thus, the research findings showed that the transitions of seizure-like discharges provide further theoretical analyses to clarify the complex mechanism of seizures.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112082"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2025.112082","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Astrocytes have an important role in the indirect regulation of neuronal excitability. The abnormalities of their ion channels cause neurons to discharge abnormally, which may induce seizures. The inwardly rectifying potassium channel 4.1 (Kir4.1 channel) and the voltage-gated calcium channel (VGCC) of an astrocyte play important roles in maintaining the homeostasis of these potassium and calcium ions, and have been found to be associated with seizures. However, the underlying mechanisms by which they induce seizures remain unclear. This paper established a neuron-astrocyte network model, which is a model consisting of a neuron and an astrocyte, to explore some mechanisms of epileptic seizures. Through a series of simulations based on this model, the results showed that low conductance of Kir4.1 channel can induce spontaneous periodic epileptic activity (SPEA) whereas higher conductance results in spontaneous periodic bursting event (SPBE) and high-frequency tonic discharges (HFTD). The abnormalities of VGCC also lead to the generation of SPEA and SPBE. As the changes of potassium concentration in the largest nearby reservoir which is analogous to a bath solution that contains a specific concentration of potassium, SPEA can undergo a process from appearance to disappearance. Thus, the research findings showed that the transitions of seizure-like discharges provide further theoretical analyses to clarify the complex mechanism of seizures.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.