The long term effects of uncoupling interventions as a therapy for dementia in humans

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-15 DOI:10.1016/j.jtbi.2024.111825
Alan G. Holt , Adrian M. Davies
{"title":"The long term effects of uncoupling interventions as a therapy for dementia in humans","authors":"Alan G. Holt ,&nbsp;Adrian M. Davies","doi":"10.1016/j.jtbi.2024.111825","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we use simulation methods to study a hypothetical uncoupling agent as a therapy for dementia. We simulate the proliferation of mitochondrial deletion mutants amongst a population of wild-type in human neurons. Mitochondria play a key role in ATP generation. Clonal expansion can lead to the wild-type being overwhelmed by deletions such that a diminished population can no longer fulfil a cell’s energy requirement, eventually leading to its demise. The intention of uncoupling is to reduce the formation of deletion mutants by reducing mutation rate. However, a consequence of uncoupling is that the energy production efficacy is also reduced which in turn increases wild-type copy number in order to compensate for the energy deficit. The results of this paper showed that uncoupling reduced the severity of dementia, however, there was some increase in cognitive dysfunction pre-onset of dementia. The effectiveness of uncoupling was dependent upon the timing of intervention relative to the onset of dementia and would necessitate predicting its onset many years in advance.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001061","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we use simulation methods to study a hypothetical uncoupling agent as a therapy for dementia. We simulate the proliferation of mitochondrial deletion mutants amongst a population of wild-type in human neurons. Mitochondria play a key role in ATP generation. Clonal expansion can lead to the wild-type being overwhelmed by deletions such that a diminished population can no longer fulfil a cell’s energy requirement, eventually leading to its demise. The intention of uncoupling is to reduce the formation of deletion mutants by reducing mutation rate. However, a consequence of uncoupling is that the energy production efficacy is also reduced which in turn increases wild-type copy number in order to compensate for the energy deficit. The results of this paper showed that uncoupling reduced the severity of dementia, however, there was some increase in cognitive dysfunction pre-onset of dementia. The effectiveness of uncoupling was dependent upon the timing of intervention relative to the onset of dementia and would necessitate predicting its onset many years in advance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解耦干预作为治疗人类痴呆症的一种方法的长期效果
在本文中,我们使用模拟方法研究了一种治疗痴呆症的假想解偶联剂。我们模拟了线粒体缺失突变体在人类神经元野生型群体中的增殖。线粒体在 ATP 生成中起着关键作用。克隆扩增会导致野生型被缺失突变体所淹没,从而使数量减少的突变体无法再满足细胞的能量需求,最终导致细胞死亡。解偶联的目的是通过降低突变率来减少缺失突变体的形成。然而,解偶联的后果是能量生产效率也会降低,这反过来又会增加野生型拷贝数,以弥补能量不足。本文的研究结果表明,解偶联降低了痴呆症的严重程度,但痴呆症发病前的认知功能障碍却有所增加。解偶联的有效性取决于相对于痴呆症发病的干预时机,因此有必要提前多年预测痴呆症的发病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1