A Low-Power DNN Accelerator With Mean-Error-Minimized Approximate Signed Multiplier

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2024-04-16 DOI:10.1109/OJCAS.2023.3279251
Laimin Du;Leibin Ni;Xiong Liu;Guanqi Peng;Kai Li;Wei Mao;Hao Yu
{"title":"A Low-Power DNN Accelerator With Mean-Error-Minimized Approximate Signed Multiplier","authors":"Laimin Du;Leibin Ni;Xiong Liu;Guanqi Peng;Kai Li;Wei Mao;Hao Yu","doi":"10.1109/OJCAS.2023.3279251","DOIUrl":null,"url":null,"abstract":"Approximate computing is an emerging and effective method for reducing energy consumption in digital circuits, which is critical for energy-efficient performance improvement of edge-computing devices. In this paper, we propose a low-power DNN accelerator with novel signed approximate multiplier based on probability-optimized compressor and error compensation. The probability-optimized compressor is customized for partial product matrix (PPM) of signed operands, which gets the optimal logic circuit after probabilistic analysis and optimization. At the same time, we explored the PPM truncation method, found out the impact of different partial product (PP) truncation numbers on circuit benefit and error, and achieved a more ideal performance-error tradeoff through a reasonable error compensation method. In the optimal case of 8 bits, the proposed approximate multiplier saves 49.84% power, 46.41% area and 24.65% delay compared to the exact multiplier. We employed the proposed approximate multiplier in the vector systolic array as the processing element (PE). Under the VGG-16 evaluation, the proposed accelerator achieves performance improvement of energy efficiency \n<inline-formula> <tex-math>$1.96\\times $ </tex-math></inline-formula>\n, while the error loss was only 0.95%.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10500495","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10500495/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Approximate computing is an emerging and effective method for reducing energy consumption in digital circuits, which is critical for energy-efficient performance improvement of edge-computing devices. In this paper, we propose a low-power DNN accelerator with novel signed approximate multiplier based on probability-optimized compressor and error compensation. The probability-optimized compressor is customized for partial product matrix (PPM) of signed operands, which gets the optimal logic circuit after probabilistic analysis and optimization. At the same time, we explored the PPM truncation method, found out the impact of different partial product (PP) truncation numbers on circuit benefit and error, and achieved a more ideal performance-error tradeoff through a reasonable error compensation method. In the optimal case of 8 bits, the proposed approximate multiplier saves 49.84% power, 46.41% area and 24.65% delay compared to the exact multiplier. We employed the proposed approximate multiplier in the vector systolic array as the processing element (PE). Under the VGG-16 evaluation, the proposed accelerator achieves performance improvement of energy efficiency $1.96\times $ , while the error loss was only 0.95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有均值误差最小化近似符号乘法器的低功耗 DNN 加速器
近似计算是降低数字电路能耗的一种新兴而有效的方法,对于提高边缘计算设备的能效性能至关重要。在本文中,我们提出了一种低功耗 DNN 加速器,它具有基于概率优化压缩器和误差补偿的新型带符号近似乘法器。概率优化压缩器是为带符号操作数的部分乘积矩阵(PPM)定制的,经过概率分析和优化后可获得最佳逻辑电路。同时,我们探索了 PPM 的截断方法,发现了不同部分积(PP)截断数对电路效益和误差的影响,并通过合理的误差补偿方法实现了较为理想的性能-误差权衡。在 8 位的最佳情况下,与精确乘法器相比,所提出的近似乘法器可节省 49.84% 的功耗、46.41% 的面积和 24.65% 的延迟。我们在矢量收缩阵列中采用了所提出的近似乘法器作为处理元件(PE)。在 VGG-16 评估中,所提出的加速器实现了能效 1.96 美元/次的性能提升,而误差损失仅为 0.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
A Companding Technique to Reduce Peak-to-Average Ratio in Discrete Multitone Wireline Receivers Low-Power On-Chip Energy Harvesting: From Interface Circuits Perspective A 10 GHz Dual-Loop PLL With Active Cycle-Jitter Correction Achieving 12dB Spur and 29% Jitter Reduction A 45Gb/s Analog Multi-Tone Receiver Utilizing a 6-Tap MIMO-FFE in 22nm FDSOI FBMC vs. PAM and DMT for High-Speed Wireline Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1