Fan Jiang, Lulu Chen, Bing Xue, Xinxin Tian, Liang Hua Ye, Jian-Feng Li, Duo-Long Wu
{"title":"Multi-conductor electromagnetic coupling model for sensitive wires subject to driven wire in complex electronic systems","authors":"Fan Jiang, Lulu Chen, Bing Xue, Xinxin Tian, Liang Hua Ye, Jian-Feng Li, Duo-Long Wu","doi":"10.1002/jnm.3236","DOIUrl":null,"url":null,"abstract":"<p>A novel multi-conductor electromagnetic coupling model for the sensitive-wire subject to driven wire in a high-precision machining workbench is proposed in this paper. The general coupling model for an <i>N-</i>wire system is derived and is used to evaluate the wire coupling effect. Furthermore, 4-wire and 3-wire models are demonstrated to verify the accuracy through full-wave electromagnetic simulation below 10 MHz. The results show that the error between the proposed method and the full-wave electromagnetic simulation is less than 10%, demonstrating the high efficiency and accuracy of the proposed method. When the parameters of the driven power wire and the most sensitive wire are fixed and the parameters of neighboring wires are swept, the maximum fluctuation of the induced current on the most sensitive wire is 6.1 dB. The efficient calculation method proposed in this work helps reduce the risk of electromagnetic interference in complex electronic systems and improves the design efficiency of wires. It is promising to become a high-performance method with high efficiency and precision.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3236","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel multi-conductor electromagnetic coupling model for the sensitive-wire subject to driven wire in a high-precision machining workbench is proposed in this paper. The general coupling model for an N-wire system is derived and is used to evaluate the wire coupling effect. Furthermore, 4-wire and 3-wire models are demonstrated to verify the accuracy through full-wave electromagnetic simulation below 10 MHz. The results show that the error between the proposed method and the full-wave electromagnetic simulation is less than 10%, demonstrating the high efficiency and accuracy of the proposed method. When the parameters of the driven power wire and the most sensitive wire are fixed and the parameters of neighboring wires are swept, the maximum fluctuation of the induced current on the most sensitive wire is 6.1 dB. The efficient calculation method proposed in this work helps reduce the risk of electromagnetic interference in complex electronic systems and improves the design efficiency of wires. It is promising to become a high-performance method with high efficiency and precision.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.