{"title":"Adaptive thresholds for improved load balancing in mobile edge computing using K-means clustering","authors":"Tahir Maqsood, Sardar Khaliq uz Zaman, Arslan Qayyum, Faisal Rehman, Saad Mustafa, Junaid Shuja","doi":"10.1007/s11235-024-01134-5","DOIUrl":null,"url":null,"abstract":"<p>Mobile edge computing (MEC) has emerged as a promising technology that can revolutionize the future of mobile networks. MEC brings compute and storage capabilities to the edge of the network closer to end-users. This enables faster data processing and improved user experience by reducing latency. MEC has the potential to decrease the burden on the core network by transferring computational and storage responsibilities to the edge, thereby reducing overall network congestion. Load balancing is critical for effectively utilizing the resources of the MEC. This ensures that the workload is distributed uniformly across all of the available resources. Load balancing is a complex task and there are various algorithms that can be used to achieve it, such as round-robin, least connection, and IP hash. To differentiate between heavily loaded and lightly loaded servers, current load balancing methods use an average response time to gauge the load on the edge server. Nevertheless, this approach has lower precision and may result in an unequal distribution of the workload. Our study introduces a dynamic threshold calculation technique that relies on a response-time threshold of the edge servers using K-means clustering. K-means based proposed algorithm classifies the servers in two sets (here K = 2), i.e., overloaded and lightly loaded edge servers. Consequently, workload is migrated from overloaded to lightly loaded servers to evenly distribute the workload. Experimental results show that the proposed technique reduces latency and improves resource utilization.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"175 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01134-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile edge computing (MEC) has emerged as a promising technology that can revolutionize the future of mobile networks. MEC brings compute and storage capabilities to the edge of the network closer to end-users. This enables faster data processing and improved user experience by reducing latency. MEC has the potential to decrease the burden on the core network by transferring computational and storage responsibilities to the edge, thereby reducing overall network congestion. Load balancing is critical for effectively utilizing the resources of the MEC. This ensures that the workload is distributed uniformly across all of the available resources. Load balancing is a complex task and there are various algorithms that can be used to achieve it, such as round-robin, least connection, and IP hash. To differentiate between heavily loaded and lightly loaded servers, current load balancing methods use an average response time to gauge the load on the edge server. Nevertheless, this approach has lower precision and may result in an unequal distribution of the workload. Our study introduces a dynamic threshold calculation technique that relies on a response-time threshold of the edge servers using K-means clustering. K-means based proposed algorithm classifies the servers in two sets (here K = 2), i.e., overloaded and lightly loaded edge servers. Consequently, workload is migrated from overloaded to lightly loaded servers to evenly distribute the workload. Experimental results show that the proposed technique reduces latency and improves resource utilization.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.