Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, Kerri Johnson
{"title":"Post-fire Variability in Sediment Transport by Ravel in the Diablo Range","authors":"Hayden L. Jacobson, Danica L. Roth, Gabriel Walton, Margaret Zimmer, Kerri Johnson","doi":"10.5194/egusphere-2023-2694","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Post-fire changes to the transport regime of dry ravel, which describes the transport of individual particles downslope, are poorly constrained on a regional level but critical to understand as ravel may contribute to elevated sediment fluxes and associated debris-flow activity observed post-fire in the western United States. In this study, we evaluated post-fire variability in dry ravel travel distance exceedance probabilities and disentrainment rates through a series of field experiments simulating ravel with particles collected in situ. We conducted experiments between March 2021 and March 2022 on soil-mantled hillslopes in the Diablo Range of central coastal California following the Santa Clara Unit Lightning Complex fire of August 2020 with the goal of identifying a regime of “bounded” (light-tailed) or “runaway” (heavy-tailed or nonlocal) motion for different particle sizes between 3 and 35 mm. We conducted this study on both grassy south-facing slopes and oak woodland north-facing slopes. We tracked the post-fire evolution of particle transport regimes by fitting a probabilistic Lomax distribution model to the empirical travel distance exceedance probabilities of different particle sizes on a range of experimental slopes. Our experimental results indicated that a general transition from more runaway to more bounded transport occurred for our largest experimental particles (median intermediate axis of 28 mm) on south-facing slopes as vegetation recovered within the first year post-fire, while small and medium particles (median intermediate axes of 6 and 13 mm respectively) on south- or north-facing slopes and large particles on north-facing slopes did not experience notable changes in transport behavior. After the first year, seasonal variation in vegetation characteristics, such as grass density, appeared to control particle motion.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":"43 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-2694","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Post-fire changes to the transport regime of dry ravel, which describes the transport of individual particles downslope, are poorly constrained on a regional level but critical to understand as ravel may contribute to elevated sediment fluxes and associated debris-flow activity observed post-fire in the western United States. In this study, we evaluated post-fire variability in dry ravel travel distance exceedance probabilities and disentrainment rates through a series of field experiments simulating ravel with particles collected in situ. We conducted experiments between March 2021 and March 2022 on soil-mantled hillslopes in the Diablo Range of central coastal California following the Santa Clara Unit Lightning Complex fire of August 2020 with the goal of identifying a regime of “bounded” (light-tailed) or “runaway” (heavy-tailed or nonlocal) motion for different particle sizes between 3 and 35 mm. We conducted this study on both grassy south-facing slopes and oak woodland north-facing slopes. We tracked the post-fire evolution of particle transport regimes by fitting a probabilistic Lomax distribution model to the empirical travel distance exceedance probabilities of different particle sizes on a range of experimental slopes. Our experimental results indicated that a general transition from more runaway to more bounded transport occurred for our largest experimental particles (median intermediate axis of 28 mm) on south-facing slopes as vegetation recovered within the first year post-fire, while small and medium particles (median intermediate axes of 6 and 13 mm respectively) on south- or north-facing slopes and large particles on north-facing slopes did not experience notable changes in transport behavior. After the first year, seasonal variation in vegetation characteristics, such as grass density, appeared to control particle motion.
期刊介绍:
Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth''s surface and their interactions on all scales.