Umbreen Ayub, Shahid Mubeen, Amir Abbas, Aziz Khan, Thabet Abdeljawad
{"title":"Some transforms, Riemann–Liouville fractional operators, and applications of newly extended M–L (p, s, k) function","authors":"Umbreen Ayub, Shahid Mubeen, Amir Abbas, Aziz Khan, Thabet Abdeljawad","doi":"10.1515/phys-2024-0005","DOIUrl":null,"url":null,"abstract":"There are several problems in physics, such as kinetic energy equation, wave equation, anomalous diffusion process, and viscoelasticity that are described well in the fractional differential equation form. Therefore, the solutions with elementary solution method cannot be solved and described deliberately with detailed physics of the problems, so these problems are solved with the help of special operators such as Mittag–Leffler (M–L) functions equipped with Riemann–Liouville (R–L) fractional operators. Hence, keeping in view the above-mentioned problems in physics in the current study, the generalized properties are derived M–L functions connected with R–L fractional operators that are investigated in the generalized form. These extended special operators will be used for the solutions of generalized kinetic energy equation. The M–L function is a fundamental special function with a wide range of applications in mathematics, physics, engineering, and various scientific disciplines. Ayub <jats:italic>et al.</jats:italic> gave the definition of newly extended M–L <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0005_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,s,k)</jats:tex-math> </jats:alternatives> </jats:inline-formula> function. Also, they gave its convergence condition and found several results relevant to that. The purpose of this study is to investigate newly extended M–L function and study its elementary properties and integral transforms such as Whittaker transform and fractional Fourier transform. The R–L fractional operator is a fundamental concept in fractional calculus, a branch of mathematics that generalizes differentiation and integration to non-integer orders. In this study, we discuss the relation of M–L <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0005_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,s,k)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-function and R–L fractional operators. In some cases, fractional calculus is used to describe kinetic energy equations, particularly in systems where fractional derivatives are more appropriate than classical integer-order derivatives. The M–L function can appear as a solution or as a part of the solution to these fractional kinetic energy equations. Also, we gave the generalization of kinetic energy equation and its solution in terms of newly extended M–L function.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0005","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There are several problems in physics, such as kinetic energy equation, wave equation, anomalous diffusion process, and viscoelasticity that are described well in the fractional differential equation form. Therefore, the solutions with elementary solution method cannot be solved and described deliberately with detailed physics of the problems, so these problems are solved with the help of special operators such as Mittag–Leffler (M–L) functions equipped with Riemann–Liouville (R–L) fractional operators. Hence, keeping in view the above-mentioned problems in physics in the current study, the generalized properties are derived M–L functions connected with R–L fractional operators that are investigated in the generalized form. These extended special operators will be used for the solutions of generalized kinetic energy equation. The M–L function is a fundamental special function with a wide range of applications in mathematics, physics, engineering, and various scientific disciplines. Ayub et al. gave the definition of newly extended M–L (p,s,k)\left(p,s,k) function. Also, they gave its convergence condition and found several results relevant to that. The purpose of this study is to investigate newly extended M–L function and study its elementary properties and integral transforms such as Whittaker transform and fractional Fourier transform. The R–L fractional operator is a fundamental concept in fractional calculus, a branch of mathematics that generalizes differentiation and integration to non-integer orders. In this study, we discuss the relation of M–L (p,s,k)\left(p,s,k)-function and R–L fractional operators. In some cases, fractional calculus is used to describe kinetic energy equations, particularly in systems where fractional derivatives are more appropriate than classical integer-order derivatives. The M–L function can appear as a solution or as a part of the solution to these fractional kinetic energy equations. Also, we gave the generalization of kinetic energy equation and its solution in terms of newly extended M–L function.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.