Elvis Falcão de Araújo, Juan Pablo Flórez Mera, Luis H. R. Cisterna, Márcia Barbosa Henriques Mantelli
{"title":"New water-stainless steel rod-plate heat pipe: model and experiments","authors":"Elvis Falcão de Araújo, Juan Pablo Flórez Mera, Luis H. R. Cisterna, Márcia Barbosa Henriques Mantelli","doi":"10.1007/s00231-024-03471-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This work proposes a novel flat heat pipe technology, namely the rod-plate heat pipe, formed by the diffusion bonding of a set of parallel rods, of around 8 mm diameter, between flat plates of approximately 500 × 60 × 2 mm<sup>3</sup>. This design is inspired by the mini wire-plate heat pipe concept. This work is the first in the literature to apply this technology to large size heat pipes. A theoretical model is devised and used to predict the fluid distribution along the heat pipe, detect regions of flooding and dry-out and determine the best charging volume. Experiments are performed with a stainless-steel device operating in horizontal orientation with water as working fluid. Electrical cartridge resistances play the role of the evaporator heat source, while the condenser is cooled by either natural convection and radiation or heat exchangers linked to a thermal bath. For the experiments using a device with an exposed condenser, the minimum thermal resistance is 0.147 °C/W, for 88.50 W for heat input. The operation temperature increases with heat input up to 326.56 °C for a heat load of 191.40 W. The thermal resistances of the heat pipe cooled by heat exchangers have a minimum of 0.123 °C/W at 171.57 W heat transport rate, for a 40 °C thermal bath temperature. The theoretical results and data obtained so far corroborate the feasibility of this technology, with devices able to transfer up to 22.18 W per groove.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00231-024-03471-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a novel flat heat pipe technology, namely the rod-plate heat pipe, formed by the diffusion bonding of a set of parallel rods, of around 8 mm diameter, between flat plates of approximately 500 × 60 × 2 mm3. This design is inspired by the mini wire-plate heat pipe concept. This work is the first in the literature to apply this technology to large size heat pipes. A theoretical model is devised and used to predict the fluid distribution along the heat pipe, detect regions of flooding and dry-out and determine the best charging volume. Experiments are performed with a stainless-steel device operating in horizontal orientation with water as working fluid. Electrical cartridge resistances play the role of the evaporator heat source, while the condenser is cooled by either natural convection and radiation or heat exchangers linked to a thermal bath. For the experiments using a device with an exposed condenser, the minimum thermal resistance is 0.147 °C/W, for 88.50 W for heat input. The operation temperature increases with heat input up to 326.56 °C for a heat load of 191.40 W. The thermal resistances of the heat pipe cooled by heat exchangers have a minimum of 0.123 °C/W at 171.57 W heat transport rate, for a 40 °C thermal bath temperature. The theoretical results and data obtained so far corroborate the feasibility of this technology, with devices able to transfer up to 22.18 W per groove.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.