Cristina Hernández-Rollán, Anja K. Ehrmann, Arsenios Vlassis, Vijayalakshmi Kandasamy, Morten H. H. Nørholm
{"title":"Neq2X7: a multi-purpose and open-source fusion DNA polymerase for advanced DNA engineering and diagnostics PCR","authors":"Cristina Hernández-Rollán, Anja K. Ehrmann, Arsenios Vlassis, Vijayalakshmi Kandasamy, Morten H. H. Nørholm","doi":"10.1186/s12896-024-00844-7","DOIUrl":null,"url":null,"abstract":"Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10−5 bp−1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity – an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"48 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-024-00844-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10−5 bp−1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity – an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.