Dillon A. Brown, Anthony Reid, Elizabeth A. Jagodzinski, Megan Williams, Alex Simpson, Mark Pawley, Christopher L. Kirkland, Claire Wade, Alexander T. De Vries Van Leeuwen, Stijn Glorie
{"title":"Testing in-situ apatite Lu–Hf dating in polymetamorphic mafic rocks: a case study from Palaeoproterozoic southern Australia","authors":"Dillon A. Brown, Anthony Reid, Elizabeth A. Jagodzinski, Megan Williams, Alex Simpson, Mark Pawley, Christopher L. Kirkland, Claire Wade, Alexander T. De Vries Van Leeuwen, Stijn Glorie","doi":"10.1007/s00410-024-02117-0","DOIUrl":null,"url":null,"abstract":"<div><p>In mafic systems where primary mineral assemblages have witnessed moderate- to high-temperature hydrous overprinting and deformation, little is known about the retentivity of the Lu–Hf isotopic system in apatite. This study presents apatite laser-ablation Lu–Hf and U–Pb geochronology, zircon geochronology, and detailed petrological information from polymetamorphic mafic intrusions located in the central-western Gawler Craton in southern Australia, which records an extensive tectonometamorphic history spanning the Neoarchaean to the Mesoproterozoic. Zircon records magmatic crystallisation ages of c. 2479–2467 Ma, coinciding with the onset of the c. 2475–2410 Ma granulite-facies Sleafordian Orogeny. The amphibole-dominant hydrous assemblages which extensively overprint the primary magmatic assemblages are hypothesised to post-date the Sleafordian Orogeny. The Lu–Hf and U–Pb isotopic systems in apatite are used to test this hypothesis, with both isotopic systems recording significantly younger ages correlating with the c. 1730–1690 Ma Kimban Orogeny and the c. 1590–1575 Ma Hiltaba magmatic event, respectively. While the early Mesoproterozoic apatite U–Pb ages are attributed to thermal re-equilibration, the older Lu–Hf ages are interpreted to reflect re-equilibration facilitated primarily by dissolution-reprecipitation, but also thermally activated volume diffusion. The mechanisms of Lu–Hf isotopic resetting are distinguished based on microscale textures and trace element abundances in apatite and the integration of apatite-amphibole textural relationships and temperatures determined from the Ti content in amphibole. More broadly, the results indicate that at low to moderate temperatures, apatite hosted in mafic rocks is susceptible to complete recrystallisation in rocks that have weak to moderate foliations. In contrast, at higher temperatures in the absence of strain, the Lu–Hf system in apatite is comparatively robust. Ultimately, the findings from this study advance our understanding of the complex role that both metamorphism and deformation play on the ability of mafic-hosted apatite to retain primary Lu–Hf isotopic signatures.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02117-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02117-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In mafic systems where primary mineral assemblages have witnessed moderate- to high-temperature hydrous overprinting and deformation, little is known about the retentivity of the Lu–Hf isotopic system in apatite. This study presents apatite laser-ablation Lu–Hf and U–Pb geochronology, zircon geochronology, and detailed petrological information from polymetamorphic mafic intrusions located in the central-western Gawler Craton in southern Australia, which records an extensive tectonometamorphic history spanning the Neoarchaean to the Mesoproterozoic. Zircon records magmatic crystallisation ages of c. 2479–2467 Ma, coinciding with the onset of the c. 2475–2410 Ma granulite-facies Sleafordian Orogeny. The amphibole-dominant hydrous assemblages which extensively overprint the primary magmatic assemblages are hypothesised to post-date the Sleafordian Orogeny. The Lu–Hf and U–Pb isotopic systems in apatite are used to test this hypothesis, with both isotopic systems recording significantly younger ages correlating with the c. 1730–1690 Ma Kimban Orogeny and the c. 1590–1575 Ma Hiltaba magmatic event, respectively. While the early Mesoproterozoic apatite U–Pb ages are attributed to thermal re-equilibration, the older Lu–Hf ages are interpreted to reflect re-equilibration facilitated primarily by dissolution-reprecipitation, but also thermally activated volume diffusion. The mechanisms of Lu–Hf isotopic resetting are distinguished based on microscale textures and trace element abundances in apatite and the integration of apatite-amphibole textural relationships and temperatures determined from the Ti content in amphibole. More broadly, the results indicate that at low to moderate temperatures, apatite hosted in mafic rocks is susceptible to complete recrystallisation in rocks that have weak to moderate foliations. In contrast, at higher temperatures in the absence of strain, the Lu–Hf system in apatite is comparatively robust. Ultimately, the findings from this study advance our understanding of the complex role that both metamorphism and deformation play on the ability of mafic-hosted apatite to retain primary Lu–Hf isotopic signatures.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.