Online Measurement for Parameter Discovery in Fused Filament Fabrication

IF 2.4 3区 材料科学 Q3 ENGINEERING, MANUFACTURING Integrating Materials and Manufacturing Innovation Pub Date : 2024-04-03 DOI:10.1007/s40192-024-00350-w
{"title":"Online Measurement for Parameter Discovery in Fused Filament Fabrication","authors":"","doi":"10.1007/s40192-024-00350-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>To describe a new method for the automatic generation of process parameters for fused filament fabrication (FFF) across varying machines and materials. We use an instrumented extruder to fit a function that maps nozzle pressures across varying flow rates and temperatures for a given machine and material configuration. We then develop a method to extract real parameters for flow rate and temperature using relative pressures and temperature offsets. Our method allows us to successfully find process parameters, using one set of input parameters, across all of the machine and material configurations that we tested, even in materials that we had never printed before. Rather than using direct parameters in FFF printing, which is time-consuming to tune and modify, it is possible to deploy machine-generated data that captures the fundamental phenomenology of FFF to automatically select parameters.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-024-00350-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

To describe a new method for the automatic generation of process parameters for fused filament fabrication (FFF) across varying machines and materials. We use an instrumented extruder to fit a function that maps nozzle pressures across varying flow rates and temperatures for a given machine and material configuration. We then develop a method to extract real parameters for flow rate and temperature using relative pressures and temperature offsets. Our method allows us to successfully find process parameters, using one set of input parameters, across all of the machine and material configurations that we tested, even in materials that we had never printed before. Rather than using direct parameters in FFF printing, which is time-consuming to tune and modify, it is possible to deploy machine-generated data that captures the fundamental phenomenology of FFF to automatically select parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线测量用于发现熔丝制造中的参数
摘要 介绍一种自动生成不同机器和材料的熔融长丝制造(FFF)工艺参数的新方法。我们使用一台带仪器的挤出机来拟合一个函数,该函数可映射给定机器和材料配置下不同流速和温度下的喷嘴压力。然后,我们开发了一种方法,利用相对压力和温度偏移来提取流速和温度的实际参数。我们的方法使我们能够使用一组输入参数,在我们测试过的所有机器和材料配置中成功找到工艺参数,即使是我们以前从未打印过的材料。在 FFF 印刷中,直接使用参数需要耗费大量时间来调整和修改,而使用机器生成的数据则可以捕捉到 FFF 的基本现象,从而自动选择参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Integrating Materials and Manufacturing Innovation
Integrating Materials and Manufacturing Innovation Engineering-Industrial and Manufacturing Engineering
CiteScore
5.30
自引率
9.10%
发文量
42
审稿时长
39 days
期刊介绍: The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.
期刊最新文献
New Paradigms in Model Based Materials Definitions for Titanium Alloys in Aerospace Applications An Explainable Deep Learning Model Based on Multi-scale Microstructure Information for Establishing Composition–Microstructure–Property Relationship of Aluminum Alloys Comparison of Full-Field Crystal Plasticity Simulations to Synchrotron Experiments: Detailed Investigation of Mispredictions 3D Reconstruction of a High-Energy Diffraction Microscopy Sample Using Multi-modal Serial Sectioning with High-Precision EBSD and Surface Profilometry L-PBF High-Throughput Data Pipeline Approach for Multi-modal Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1