Yuanwen Lai, Jianhong Liang, Yinsheng Rao, Yanhui Fan, Renyan Zhan, Said Easa, Shuyi Wang
{"title":"Flexible optimal bus-schedule bridging for metro operation-interruption","authors":"Yuanwen Lai, Jianhong Liang, Yinsheng Rao, Yanhui Fan, Renyan Zhan, Said Easa, Shuyi Wang","doi":"10.1049/itr2.12512","DOIUrl":null,"url":null,"abstract":"<p>Under the sudden interruption of the metro, it is significant to dispatch emergency bridging buses to evacuate stranded passengers to improve linkage management and service reliability. Aiming at the problem of emergency bridging bus scheduling, considering the remaining capacity of conventional buses, passenger tolerance, and site convenience, a flexible combined emergency bridging bus scheduling model is constructed based on the constraints of vehicle capacity, dispatching capacity, and maximum evacuation times of emergency bridging bus, aiming at minimizing the maximum evacuation time and passenger delay. The improved Harris hawk algorithm is used to solve the model, and the evacuation plan of the demand-responsive and station-station bridging lines is obtained. The maximum evacuation time is 41 min, and the average delay of stranded passengers is 19 min. The results show that the maximum evacuation time is 10% and 27% less than the fixed combined and single scheduling. The average delay is 16% and 42% less than the fixed combination and traditional single scheduling. The sensitivity analysis of the influencing factors of emergency bridging bus scheduling is conducted. The results show that the flexible combined emergency bridging bus scheduling model constructed in this paper can improve evacuation efficiency and reduce passenger travel delays.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 7","pages":"1306-1323"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12512","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12512","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Under the sudden interruption of the metro, it is significant to dispatch emergency bridging buses to evacuate stranded passengers to improve linkage management and service reliability. Aiming at the problem of emergency bridging bus scheduling, considering the remaining capacity of conventional buses, passenger tolerance, and site convenience, a flexible combined emergency bridging bus scheduling model is constructed based on the constraints of vehicle capacity, dispatching capacity, and maximum evacuation times of emergency bridging bus, aiming at minimizing the maximum evacuation time and passenger delay. The improved Harris hawk algorithm is used to solve the model, and the evacuation plan of the demand-responsive and station-station bridging lines is obtained. The maximum evacuation time is 41 min, and the average delay of stranded passengers is 19 min. The results show that the maximum evacuation time is 10% and 27% less than the fixed combined and single scheduling. The average delay is 16% and 42% less than the fixed combination and traditional single scheduling. The sensitivity analysis of the influencing factors of emergency bridging bus scheduling is conducted. The results show that the flexible combined emergency bridging bus scheduling model constructed in this paper can improve evacuation efficiency and reduce passenger travel delays.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf