K. Rawat, P. Bhandari, V. S. Bisht, T. Alam, M. I. H. Siddiqui
{"title":"Numerical Investigation of Adiabatic Ice Slurry Flow through a Horizontal T–Shaped Pipe","authors":"K. Rawat, P. Bhandari, V. S. Bisht, T. Alam, M. I. H. Siddiqui","doi":"10.1134/S0015462823602309","DOIUrl":null,"url":null,"abstract":"<p>Ice slurry has a huge application in the field of refrigeration and space cooling due to its high energy storage and transport capability. During transportation of ice slurry, various bends, junctions, and bifurcations are the essential parts of any pipeline network. In the present study, numerical simulation has been carried out on ice slurry flow through a horizontal T-shaped pipe of 23 mm diameter. The length of each section of the T-shaped pipe (inlet and both bifurcated branches) are equal to 50 times of the pipe diameter. The Eulerian granular multiphase model with the per phase <i>k</i>–ε turbulence model have been adopted for simulation. The investigation has been performed for the flow velocity that varied from 1 to 3 m/s and the ice concentrations ranging from 10 to 30%. The velocity and ice distribution contours are also presented in various planes near the bifurcation region to comprehend the fluid flow characteristics. It has been observed that a high-pressure zone is created on the outer wall of the T-junction as fluid strikes the wall and got deflected along the bifurcated branches. In addition, a low-pressure zone is also formed in the neighborhood of corner of the T-section. Due to that, secondary flow is induced in the bifurcated branch which results in flow separation. The velocity and the ice concentration distribution are also significantly affected near the bifurcation section. However, flow is again redeveloped towards the outlet of the bifurcated pipe branches. The results show that the ice concentration and velocity profiles at the outlet are almost homogeneous and fully developed, respectively. It is also concluded that the length of redeveloped zone in the bifurcated branch also increases with the flow velocity. Further, the influence of flow velocity on the pressure drop is more crucial as compared to the ice concentration.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 2","pages":"344 - 362"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462823602309","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ice slurry has a huge application in the field of refrigeration and space cooling due to its high energy storage and transport capability. During transportation of ice slurry, various bends, junctions, and bifurcations are the essential parts of any pipeline network. In the present study, numerical simulation has been carried out on ice slurry flow through a horizontal T-shaped pipe of 23 mm diameter. The length of each section of the T-shaped pipe (inlet and both bifurcated branches) are equal to 50 times of the pipe diameter. The Eulerian granular multiphase model with the per phase k–ε turbulence model have been adopted for simulation. The investigation has been performed for the flow velocity that varied from 1 to 3 m/s and the ice concentrations ranging from 10 to 30%. The velocity and ice distribution contours are also presented in various planes near the bifurcation region to comprehend the fluid flow characteristics. It has been observed that a high-pressure zone is created on the outer wall of the T-junction as fluid strikes the wall and got deflected along the bifurcated branches. In addition, a low-pressure zone is also formed in the neighborhood of corner of the T-section. Due to that, secondary flow is induced in the bifurcated branch which results in flow separation. The velocity and the ice concentration distribution are also significantly affected near the bifurcation section. However, flow is again redeveloped towards the outlet of the bifurcated pipe branches. The results show that the ice concentration and velocity profiles at the outlet are almost homogeneous and fully developed, respectively. It is also concluded that the length of redeveloped zone in the bifurcated branch also increases with the flow velocity. Further, the influence of flow velocity on the pressure drop is more crucial as compared to the ice concentration.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.