Electrically induced directional ion migration in two-dimensional perovskite heterostructures

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-05-01 DOI:10.1016/j.matt.2024.03.005
Jee Yung Park , Yoon Ho Lee , Md Asaduz Zaman Mamun , Mir Md Fahimul Islam , Shuchen Zhang , Ke Ma , Aalok Uday Gaitonde , Kang Wang , Seok Joo Yang , Amy Marconnet , Jianguo Mei , Muhammad Ashraful Alam , Letian Dou
{"title":"Electrically induced directional ion migration in two-dimensional perovskite heterostructures","authors":"Jee Yung Park ,&nbsp;Yoon Ho Lee ,&nbsp;Md Asaduz Zaman Mamun ,&nbsp;Mir Md Fahimul Islam ,&nbsp;Shuchen Zhang ,&nbsp;Ke Ma ,&nbsp;Aalok Uday Gaitonde ,&nbsp;Kang Wang ,&nbsp;Seok Joo Yang ,&nbsp;Amy Marconnet ,&nbsp;Jianguo Mei ,&nbsp;Muhammad Ashraful Alam ,&nbsp;Letian Dou","doi":"10.1016/j.matt.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding ion migration in two-dimensional (2D) perovskite materials is key to enhancing halide perovskite device performance and stability. However, prior studies have been primarily limited to heat- and light-induced ion migration. In this work, to investigate electrically induced ion migration in 2D perovskites, we construct a high-quality, single-crystal, 2D perovskite heterostructure device platform with near-defect-free van der Waals contact. While achieving real-time visualization of halide anions migrating toward the positive bias, defined here as directional ion migration, we also uncover the unique behavior of halide anions interdiffusing toward the opposite direction under prolonged bias. Confocal microscopy imaging reveals a halide migration channel that aligns with the crystal and heterojunction edges. After a sustained ion migration, stable junction diodes exhibiting an up to ∼1,000-fold forward-to-reverse current ratio are realized. This study unveils important fundamental insights into halide migration under electrical bias, paving the way toward high-performance devices.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524001127","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding ion migration in two-dimensional (2D) perovskite materials is key to enhancing halide perovskite device performance and stability. However, prior studies have been primarily limited to heat- and light-induced ion migration. In this work, to investigate electrically induced ion migration in 2D perovskites, we construct a high-quality, single-crystal, 2D perovskite heterostructure device platform with near-defect-free van der Waals contact. While achieving real-time visualization of halide anions migrating toward the positive bias, defined here as directional ion migration, we also uncover the unique behavior of halide anions interdiffusing toward the opposite direction under prolonged bias. Confocal microscopy imaging reveals a halide migration channel that aligns with the crystal and heterojunction edges. After a sustained ion migration, stable junction diodes exhibiting an up to ∼1,000-fold forward-to-reverse current ratio are realized. This study unveils important fundamental insights into halide migration under electrical bias, paving the way toward high-performance devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维过氧化物异质结构中的电诱导离子定向迁移
了解二维(2D)包晶材料中的离子迁移是提高卤化物包晶器件性能和稳定性的关键。然而,之前的研究主要局限于热和光诱导的离子迁移。在这项工作中,为了研究二维过氧化物中电诱导的离子迁移,我们构建了一个具有近乎无缺陷范德华接触的高质量单晶二维过氧化物异质结构器件平台。在实现卤化阴离子向正偏压方向迁移(此处定义为离子定向迁移)的实时可视化的同时,我们还发现了卤化阴离子在长时间偏压下向相反方向相互扩散的独特行为。共聚焦显微镜成像显示了与晶体和异质结边缘一致的卤化物迁移通道。经过持续的离子迁移,实现了稳定的结二极管,其正向与反向电流比高达 1,000 倍。这项研究揭示了电偏压下卤化物迁移的重要基本观点,为实现高性能器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sp-hybridized carbon enabled crystal lattice manipulation, pushing the limit of fill factor in β-CsPbI3 perovskite solar cells Overcoming thermal energy storage density limits by liquid water recharge in zeolite-polymer composites Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles Discovery of a novel low-cost medium-entropy stainless steel with exceptional mechanical behavior over a wide temperature range Unlocking lithium ion conduction in lithium metal fluorides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1