{"title":"Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current","authors":"Xueping Li, Xiaojie Tang, Zhuojun Wang, Peize Yuan, Lin Li, Chenhai Shen, Congxin Xia","doi":"10.1007/s11467-023-1390-3","DOIUrl":null,"url":null,"abstract":"<div><p>Dielectric engineering plays a crucial role in the process of device miniaturization. Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors (MOSFETs), considering hetero-gate-dielectric construction, dielectric materials and GaSe stacking pattern. The results show that device performance strongly depends on the dielectric constants and locations of insulators. When high-<i>k</i> dielectric is placed close to the drain, it behaves with a larger on-state current (<i>I</i><sub>on</sub>) of 5052 µA/µm when the channel is 5 nm. Additionally, when the channel is 5 nm and insulator is HfO<sub>2</sub>, the largest <i>I</i><sub>on</sub> is 5134 µA/µm for devices with AC stacking GaSe channel. In particular, when the gate length is 2 nm, it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-<i>k</i> dielectric is used. Hence, the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 5","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1390-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric engineering plays a crucial role in the process of device miniaturization. Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors (MOSFETs), considering hetero-gate-dielectric construction, dielectric materials and GaSe stacking pattern. The results show that device performance strongly depends on the dielectric constants and locations of insulators. When high-k dielectric is placed close to the drain, it behaves with a larger on-state current (Ion) of 5052 µA/µm when the channel is 5 nm. Additionally, when the channel is 5 nm and insulator is HfO2, the largest Ion is 5134 µA/µm for devices with AC stacking GaSe channel. In particular, when the gate length is 2 nm, it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used. Hence, the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.