Yan He, Yanxia Zhao, Shao Sun, Jiayi Fang, Yi Zhang, Qing Sun, Li Liu, Yihong Duan, Xiaokang Hu, Peijun Shi
{"title":"Global warming determines future increase in compound dry and hot days within wheat growing seasons worldwide","authors":"Yan He, Yanxia Zhao, Shao Sun, Jiayi Fang, Yi Zhang, Qing Sun, Li Liu, Yihong Duan, Xiaokang Hu, Peijun Shi","doi":"10.1007/s10584-024-03718-1","DOIUrl":null,"url":null,"abstract":"<p>Compound dry and hot extremes are proved to be the most damaging climatic stressor to wheat thereby with grave implications for food security, thus it is critical to systematically reveal their changes under unabated global warming. In this study, we comprehensively investigate the global change in compound dry and hot days (CDHD) within dynamic wheat growing seasons during 2015–2100 under 4 socio-economic scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) based on the latest downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Our results demonstrate a notable increase in CDHD’s frequency (<span>\\({CDHD}_{f}\\)</span>) and severity (<span>\\({CDHD}_{s}\\)</span>) worldwide under all SSPs, such increase is sharper over southern Asia in winter wheat growing season, and southern Canada, northern America, Ukraine, Turkey and northern Kazakhstan in spring wheat growing season. As the top 10 wheat producer, India and America will suffer much more detrimental CDHD in their wheat growing season. Adopting a low forcing pathway will mitigate CDHD risks in up to 93.3% of wheat areas. Positive dependence between droughts and heats in wheat growing season is found over more than 74.2% of wheat areas, which will effectively promote the frequency and severity of CDHD. Global warming will dominate the increase of CDHD directly by increasing hot days and indirectly by enhancing potential evapotranspiration thereby aggravating droughts. This study helps to optimize adaptation strategies for mitigating CDHD risks on wheat production, and provides new insights and analysis paradigm for investigating future variations in compound extremes occurring within dynamic crops growing seasons.</p>","PeriodicalId":10372,"journal":{"name":"Climatic Change","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climatic Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10584-024-03718-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Compound dry and hot extremes are proved to be the most damaging climatic stressor to wheat thereby with grave implications for food security, thus it is critical to systematically reveal their changes under unabated global warming. In this study, we comprehensively investigate the global change in compound dry and hot days (CDHD) within dynamic wheat growing seasons during 2015–2100 under 4 socio-economic scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) based on the latest downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) models. Our results demonstrate a notable increase in CDHD’s frequency (\({CDHD}_{f}\)) and severity (\({CDHD}_{s}\)) worldwide under all SSPs, such increase is sharper over southern Asia in winter wheat growing season, and southern Canada, northern America, Ukraine, Turkey and northern Kazakhstan in spring wheat growing season. As the top 10 wheat producer, India and America will suffer much more detrimental CDHD in their wheat growing season. Adopting a low forcing pathway will mitigate CDHD risks in up to 93.3% of wheat areas. Positive dependence between droughts and heats in wheat growing season is found over more than 74.2% of wheat areas, which will effectively promote the frequency and severity of CDHD. Global warming will dominate the increase of CDHD directly by increasing hot days and indirectly by enhancing potential evapotranspiration thereby aggravating droughts. This study helps to optimize adaptation strategies for mitigating CDHD risks on wheat production, and provides new insights and analysis paradigm for investigating future variations in compound extremes occurring within dynamic crops growing seasons.
期刊介绍:
Climatic Change is dedicated to the totality of the problem of climatic variability and change - its descriptions, causes, implications and interactions among these. The purpose of the journal is to provide a means of exchange among those working in different disciplines on problems related to climatic variations. This means that authors have an opportunity to communicate the essence of their studies to people in other climate-related disciplines and to interested non-disciplinarians, as well as to report on research in which the originality is in the combinations of (not necessarily original) work from several disciplines. The journal also includes vigorous editorial and book review sections.