Examining the reliability of brain age algorithms under varying degrees of participant motion

Q1 Computer Science Brain Informatics Pub Date : 2024-04-04 DOI:10.1186/s40708-024-00223-0
Jamie L. Hanson, Dorthea J. Adkins, Eva Bacas, Peiran Zhou
{"title":"Examining the reliability of brain age algorithms under varying degrees of participant motion","authors":"Jamie L. Hanson, Dorthea J. Adkins, Eva Bacas, Peiran Zhou","doi":"10.1186/s40708-024-00223-0","DOIUrl":null,"url":null,"abstract":"Brain age algorithms using data science and machine learning techniques show promise as biomarkers for neurodegenerative disorders and aging. However, head motion during MRI scanning may compromise image quality and influence brain age estimates. We examined the effects of motion on brain age predictions in adult participants with low, high, and no motion MRI scans (Original N = 148; Analytic N = 138). Five popular algorithms were tested: brainageR, DeepBrainNet, XGBoost, ENIGMA, and pyment. Evaluation metrics, intraclass correlations (ICCs), and Bland–Altman analyses assessed reliability across motion conditions. Linear mixed models quantified motion effects. Results demonstrated motion significantly impacted brain age estimates for some algorithms, with ICCs dropping as low as 0.609 and errors increasing up to 11.5 years for high motion scans. DeepBrainNet and pyment showed greatest robustness and reliability (ICCs = 0.956–0.965). XGBoost and brainageR had the largest errors (up to 13.5 RMSE) and bias with motion. Findings indicate motion artifacts influence brain age estimates in significant ways. Furthermore, our results suggest certain algorithms like DeepBrainNet and pyment may be preferable for deployment in populations where motion during MRI acquisition is likely. Further optimization and validation of brain age algorithms is critical to use brain age as a biomarker relevant for clinical outcomes.","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"254 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00223-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Brain age algorithms using data science and machine learning techniques show promise as biomarkers for neurodegenerative disorders and aging. However, head motion during MRI scanning may compromise image quality and influence brain age estimates. We examined the effects of motion on brain age predictions in adult participants with low, high, and no motion MRI scans (Original N = 148; Analytic N = 138). Five popular algorithms were tested: brainageR, DeepBrainNet, XGBoost, ENIGMA, and pyment. Evaluation metrics, intraclass correlations (ICCs), and Bland–Altman analyses assessed reliability across motion conditions. Linear mixed models quantified motion effects. Results demonstrated motion significantly impacted brain age estimates for some algorithms, with ICCs dropping as low as 0.609 and errors increasing up to 11.5 years for high motion scans. DeepBrainNet and pyment showed greatest robustness and reliability (ICCs = 0.956–0.965). XGBoost and brainageR had the largest errors (up to 13.5 RMSE) and bias with motion. Findings indicate motion artifacts influence brain age estimates in significant ways. Furthermore, our results suggest certain algorithms like DeepBrainNet and pyment may be preferable for deployment in populations where motion during MRI acquisition is likely. Further optimization and validation of brain age algorithms is critical to use brain age as a biomarker relevant for clinical outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究不同参与者运动程度下脑年龄算法的可靠性
使用数据科学和机器学习技术的脑年龄算法有望成为神经退行性疾病和衰老的生物标志物。然而,磁共振成像扫描过程中的头部运动可能会影响图像质量并影响脑年龄估计。我们研究了运动对低运动、高运动和无运动核磁共振成像扫描的成年参与者脑年龄预测的影响(原始 N = 148;分析 N = 138)。我们测试了五种流行的算法:BrainageR、DeepBrainNet、XGBoost、ENIGMA 和 pyment。评估指标、类内相关性 (ICC) 和 Bland-Altman 分析评估了不同运动条件下的可靠性。线性混合模型量化了运动效应。结果表明,运动对某些算法的脑年龄估计有明显影响,高运动扫描的 ICCs 低至 0.609,误差则增加到 11.5 岁。DeepBrainNet 和 pyment 显示出最大的稳健性和可靠性(ICC = 0.956-0.965)。XGBoost 和 brainageR 的误差(RMSE 高达 13.5)和偏差随运动变化最大。研究结果表明,运动伪影对大脑年龄估计有显著影响。此外,我们的研究结果表明,某些算法(如 DeepBrainNet 和 pyment)可能更适合部署在磁共振成像采集过程中可能出现运动的人群中。要将脑年龄作为与临床结果相关的生物标记物,进一步优化和验证脑年龄算法至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1