Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer’s disease detection

Q1 Computer Science Brain Informatics Pub Date : 2024-04-05 DOI:10.1186/s40708-024-00222-1
Viswan Vimbi, Noushath Shaffi, Mufti Mahmud
{"title":"Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer’s disease detection","authors":"Viswan Vimbi, Noushath Shaffi, Mufti Mahmud","doi":"10.1186/s40708-024-00222-1","DOIUrl":null,"url":null,"abstract":"Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpreting the detection of Alzheimer’s disease (AD). Adhering to PRISMA and Kitchenham’s guidelines, we identified 23 relevant articles and investigated these frameworks’ prospective capabilities, benefits, and challenges in depth. The results emphasise XAI’s crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision support systems for AD prognosis.","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00222-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpreting the detection of Alzheimer’s disease (AD). Adhering to PRISMA and Kitchenham’s guidelines, we identified 23 relevant articles and investigated these frameworks’ prospective capabilities, benefits, and challenges in depth. The results emphasise XAI’s crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision support systems for AD prognosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解读人工智能模型:关于 LIME 和 SHAP 在阿尔茨海默病检测中应用的系统综述
近年来,可解释人工智能(XAI)因其能够解释机器学习(ML)和深度学习(DL)模型的复杂决策过程而备受关注。局部可解释的模型解释(LIME)和Shaply Additive exPlanation(SHAP)框架已发展成为ML和DL模型的流行解释工具。本文系统回顾了 LIME 和 SHAP 在解释阿尔茨海默病(AD)检测中的应用。根据 PRISMA 和 Kitchenham 指南,我们确定了 23 篇相关文章,并深入研究了这些框架的前瞻性能力、优势和挑战。研究结果强调了 XAI 在加强基于人工智能的 AD 预测可信度方面的关键作用。本综述旨在介绍 LIME 和 SHAP XAI 框架在提高 AD 预后临床决策支持系统真实性方面的基本能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1