{"title":"An Energy-Efficient ECG Processor With Ultra-Low-Parameter Multistage Neural Network and Optimized Power-of-Two Quantization","authors":"Zuo Zhang;Yunqi Guan;WenBin Ye","doi":"10.1109/TBCAS.2024.3385993","DOIUrl":null,"url":null,"abstract":"This work presents an energy-efficient ECG processor designed for Cardiac Arrhythmia Classification. The processor integrates a pre-processing and neural network accelerator, achieved through algorithm-hardware co-design to optimize hardware resources. We propose a lightweight two-stage neural network architecture, where the first stage includes discrete wavelet transform and an ultra-low-parameter multilayer perceptron (MLP) network, and the second stage utilizes group convolution and channel shuffle. Both stages leverage neural networks for hardware resource reuse and feature a reconfigurable processing element array and memory blocks adapted to the proposed two-stage structure to efficiently handle various convolution and MLP layers operations in the two-stage network. Additionally, an optimized power-of-two (OPOT) quantization technique is proposed to enhance accuracy in low-bit quantization, and a multiplier-less processing element structure tailored for the OPOT weight quantization is introduced. The ECG processor was implemented on a 65nm CMOS process technology with 4KB of SRAM memory, achieving an energy consumption per inference of 0.15 uJ with a power supply of 1V, 64% energy saving compared to the recent state-of-the-art work. Under 4-bit weight precision, the 5-class ECG signal classification accuracy reached 98.59% on the MIT-BIH arrhythmia dataset.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1296-1307"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494674/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an energy-efficient ECG processor designed for Cardiac Arrhythmia Classification. The processor integrates a pre-processing and neural network accelerator, achieved through algorithm-hardware co-design to optimize hardware resources. We propose a lightweight two-stage neural network architecture, where the first stage includes discrete wavelet transform and an ultra-low-parameter multilayer perceptron (MLP) network, and the second stage utilizes group convolution and channel shuffle. Both stages leverage neural networks for hardware resource reuse and feature a reconfigurable processing element array and memory blocks adapted to the proposed two-stage structure to efficiently handle various convolution and MLP layers operations in the two-stage network. Additionally, an optimized power-of-two (OPOT) quantization technique is proposed to enhance accuracy in low-bit quantization, and a multiplier-less processing element structure tailored for the OPOT weight quantization is introduced. The ECG processor was implemented on a 65nm CMOS process technology with 4KB of SRAM memory, achieving an energy consumption per inference of 0.15 uJ with a power supply of 1V, 64% energy saving compared to the recent state-of-the-art work. Under 4-bit weight precision, the 5-class ECG signal classification accuracy reached 98.59% on the MIT-BIH arrhythmia dataset.