Autophagy receptor ZmNBR1 promotes the autophagic degradation of ZmBRI1a and enhances drought tolerance in maize

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Integrative Plant Biology Pub Date : 2024-04-12 DOI:10.1111/jipb.13662
Yang Xiang, Guangdong Li, Qian Li, Yingxue Niu, Yitian Pan, Yuan Cheng, Xiangli Bian, Chongyang Zhao, Yuanhong Wang, Aying Zhang
{"title":"Autophagy receptor ZmNBR1 promotes the autophagic degradation of ZmBRI1a and enhances drought tolerance in maize","authors":"Yang Xiang,&nbsp;Guangdong Li,&nbsp;Qian Li,&nbsp;Yingxue Niu,&nbsp;Yitian Pan,&nbsp;Yuan Cheng,&nbsp;Xiangli Bian,&nbsp;Chongyang Zhao,&nbsp;Yuanhong Wang,&nbsp;Aying Zhang","doi":"10.1111/jipb.13662","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drought stress is a crucial environmental factor that limits plant growth, development, and productivity. Autophagy of misfolded proteins can help alleviate the damage caused in plants experiencing drought. However, the mechanism of autophagy-mediated drought tolerance in plants remains largely unknown. Here, we cloned the gene for a maize (<i>Zea mays</i>) selective autophagy receptor, <i>NEXT TO BRCA1 GENE 1</i> (<i>ZmNBR1</i>), and identified its role in the response to drought stress. We observed that drought stress increased the accumulation of autophagosomes. RNA sequencing and reverse transcription-quantitative polymerase chain reaction showed that <i>ZmNBR1</i> is markedly induced by drought stress. <i>ZmNBR1</i> overexpression enhanced drought tolerance, while its knockdown reduced drought tolerance in maize. Our results established that <i>ZmNBR1</i> mediates the increase in autophagosomes and autophagic activity under drought stress. ZmNBR1 also affects the expression of genes related to autophagy under drought stress<i>.</i> Moreover, we determined that BRASSINOSTEROID INSENSITIVE 1A (ZmBRI1a), a brassinosteroid receptor of the BRI1-like family, interacts with ZmNBR1. Phenotype analysis showed that ZmBRI1a negatively regulates drought tolerance in maize, and genetic analysis indicated that ZmNBR1 acts upstream of ZmBRI1a in regulating drought tolerance. Furthermore, ZmNBR1 facilitates the autophagic degradation of ZmBRI1a under drought stress. Taken together, our results reveal that ZmNBR1 regulates the expression of autophagy-related genes, thereby increasing autophagic activity and promoting the autophagic degradation of ZmBRI1a under drought stress, thus enhancing drought tolerance in maize. These findings provide new insights into the autophagy degradation of brassinosteroid signaling components by the autophagy receptor NBR1 under drought stress.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13662","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought stress is a crucial environmental factor that limits plant growth, development, and productivity. Autophagy of misfolded proteins can help alleviate the damage caused in plants experiencing drought. However, the mechanism of autophagy-mediated drought tolerance in plants remains largely unknown. Here, we cloned the gene for a maize (Zea mays) selective autophagy receptor, NEXT TO BRCA1 GENE 1 (ZmNBR1), and identified its role in the response to drought stress. We observed that drought stress increased the accumulation of autophagosomes. RNA sequencing and reverse transcription-quantitative polymerase chain reaction showed that ZmNBR1 is markedly induced by drought stress. ZmNBR1 overexpression enhanced drought tolerance, while its knockdown reduced drought tolerance in maize. Our results established that ZmNBR1 mediates the increase in autophagosomes and autophagic activity under drought stress. ZmNBR1 also affects the expression of genes related to autophagy under drought stress. Moreover, we determined that BRASSINOSTEROID INSENSITIVE 1A (ZmBRI1a), a brassinosteroid receptor of the BRI1-like family, interacts with ZmNBR1. Phenotype analysis showed that ZmBRI1a negatively regulates drought tolerance in maize, and genetic analysis indicated that ZmNBR1 acts upstream of ZmBRI1a in regulating drought tolerance. Furthermore, ZmNBR1 facilitates the autophagic degradation of ZmBRI1a under drought stress. Taken together, our results reveal that ZmNBR1 regulates the expression of autophagy-related genes, thereby increasing autophagic activity and promoting the autophagic degradation of ZmBRI1a under drought stress, thus enhancing drought tolerance in maize. These findings provide new insights into the autophagy degradation of brassinosteroid signaling components by the autophagy receptor NBR1 under drought stress.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自噬受体 ZmNBR1 促进 ZmBRI1a 的自噬降解并增强玉米的抗旱能力
干旱胁迫是限制植物生长、发育和生产力的重要环境因素。自噬错误折叠的蛋白质有助于减轻干旱对植物造成的损害。然而,植物自噬介导的抗旱机制在很大程度上仍不为人所知。在这里,我们克隆了玉米(Zea mays)选择性自噬受体 NEXT TO BRCA1 GENE 1(ZmNBR1)的基因,并确定了它在干旱胁迫响应中的作用。我们观察到干旱胁迫增加了自噬体的积累。RNA测序和反转录定量聚合酶链反应表明,ZmNBR1在干旱胁迫下被明显诱导。ZmNBR1的过表达增强了玉米的耐旱性,而其敲除则降低了玉米的耐旱性。我们的研究结果证实,在干旱胁迫下,ZmNBR1介导了自噬体和自噬活性的增加。ZmNBR1 还影响干旱胁迫下自噬相关基因的表达。此外,我们还发现 BRASSINOSTEROID INSENSITIVE 1A (ZmBRI1a)(一种类似 BRI1 家族的黄铜类固醇受体)与 ZmNBR1 相互作用。表型分析表明,ZmBRI1a 负向调节玉米的耐旱性,遗传分析表明,ZmNBR1 在调节耐旱性方面作用于 ZmBRI1a 的上游。此外,ZmNBR1 还能在干旱胁迫下促进 ZmBRI1a 的自噬降解。综上所述,我们的研究结果表明,ZmNBR1能调控自噬相关基因的表达,从而提高自噬活性,促进ZmBRI1a在干旱胁迫下的自噬降解,从而增强玉米的抗旱性。这些发现为自噬受体NBR1在干旱胁迫下自噬降解铜绿素信号成分提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
期刊最新文献
MetMiner: A user‐friendly pipeline for large‐scale plant metabolomics data analysis A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein. Cover Image: Issue information page Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1