首页 > 最新文献

Journal of Integrative Plant Biology最新文献

英文 中文
A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein. 使用 GRF3-GIF1 嵌合蛋白的高效大豆转化系统。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-06 DOI: 10.1111/jipb.13767
Ying Zhao, Peng Cheng, Ying Liu, Chunyan Liu, Zhenbang Hu, Dawei Xin, Xiaoxia Wu, Mingliang Yang, Qingshan Chen

Expression of GRF3-GIF1 chimera significantly enhanced regeneration and transformation efficiency in soybean, increasing the number of transformable cultivars. Moreover, GmGRF3-GIF1 can be combined with CRISPR/Cas9 for highly effective gene editing.

表达 GRF3-GIF1 嵌合体可显著提高大豆的再生和转化效率,增加可转化栽培品种的数量。此外,GmGRF3-GIF1 还可以与 CRISPR/Cas9 结合使用,进行高效的基因编辑。
{"title":"A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein.","authors":"Ying Zhao, Peng Cheng, Ying Liu, Chunyan Liu, Zhenbang Hu, Dawei Xin, Xiaoxia Wu, Mingliang Yang, Qingshan Chen","doi":"10.1111/jipb.13767","DOIUrl":"https://doi.org/10.1111/jipb.13767","url":null,"abstract":"<p><p>Expression of GRF3-GIF1 chimera significantly enhanced regeneration and transformation efficiency in soybean, increasing the number of transformable cultivars. Moreover, GmGRF3-GIF1 can be combined with CRISPR/Cas9 for highly effective gene editing.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management. Phakopsora pachyrhizi 转录组分析表明,共同表达的毒力效应因子是大豆锈病管理的前瞻性 RNA 干扰靶标。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-03 DOI: 10.1111/jipb.13772
Haibing Ouyang, Guangzheng Sun, Kainan Li, Rui Wang, Xiaoyu Lv, Zhichao Zhang, Rong Zhao, Ying Wang, Haidong Shu, Haibin Jiang, Sicong Zhang, Jinbin Wu, Qi Zhang, Xi Chen, Tengfei Liu, Wenwu Ye, Yan Wang, Yuanchao Wang

Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.

大豆锈病(SBR)是由一种必须生物营养型病原体大豆锈菌(Phakopsora pachyrhizi)引起的,是全球大豆的一种毁灭性病害。然而,人们对 P. pachyrhizi 侵染植物的机制知之甚少,这阻碍了 SBR 有效控制策略的开发。在此,我们对 P. pachyrhizi 在大豆中的感染周期进行了详细的组织学表征,并对 P. pachyrhizi 在感染过程中的转录进行了高分辨率剖析。结果显示,P. pachyrhizi 感染导致了基因表达的显著变化,有 10 个共表达基因模块,代表了整个感染周期不同阶段代谢和信号转导过程中转录的巨大变化。许多编码分泌蛋白的基因呈双相表达,能够抑制微生物效应物引发的细胞程序性死亡。值得注意的是,三种共同表达的 P. pachyrhizi 细胞外效应因子(PpAE1、PpAE2 和 PpAE3)被发现抑制植物免疫反应,并且对 P. pachyrhizi 感染至关重要。双链 RNA 与纳米材料的结合通过靶向 PpAE1、PpAE2 和 PpAE3 显著抑制了 SBR 的感染,并为大豆提供了针对 Pachyrhizi 的持久保护。总之,本研究揭示了与 SBR 相关的基因表达的显著变化,并确定了 P. pachyrhizi 毒力效应因子是基于 RNA 干扰的大豆抗 SBR 保护策略的前景目标。
{"title":"Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management.","authors":"Haibing Ouyang, Guangzheng Sun, Kainan Li, Rui Wang, Xiaoyu Lv, Zhichao Zhang, Rong Zhao, Ying Wang, Haidong Shu, Haibin Jiang, Sicong Zhang, Jinbin Wu, Qi Zhang, Xi Chen, Tengfei Liu, Wenwu Ye, Yan Wang, Yuanchao Wang","doi":"10.1111/jipb.13772","DOIUrl":"https://doi.org/10.1111/jipb.13772","url":null,"abstract":"<p><p>Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tradeoff between productivity and stability across above- and below-ground communities. 地面和地下群落生产力与稳定性之间的权衡。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-29 DOI: 10.1111/jipb.13771
Zonghao Hu, Haiyan Liu, Junjie Yang, Bin Hua, Michael Bahn, Shuang Pang, Tingting Li, Wei Yang, Honghui Wu, Xingguo Han, Ximei Zhang

An 11-year nitrogen addition experiment reveals that for both plants and soil microorganisms, the ruderal strategists had higher productivity but lower stability, while the tolerant strategists had higher stability and lower productivity, leading to the tradeoff between productivity and stability within and across above- and below-ground communities.

一项为期 11 年的氮添加实验显示,对于植物和土壤微生物而言,粗放型战略家的生产率较高,但稳定性较低;而耐受型战略家的稳定性较高,生产率较低。
{"title":"Tradeoff between productivity and stability across above- and below-ground communities.","authors":"Zonghao Hu, Haiyan Liu, Junjie Yang, Bin Hua, Michael Bahn, Shuang Pang, Tingting Li, Wei Yang, Honghui Wu, Xingguo Han, Ximei Zhang","doi":"10.1111/jipb.13771","DOIUrl":"https://doi.org/10.1111/jipb.13771","url":null,"abstract":"<p><p>An 11-year nitrogen addition experiment reveals that for both plants and soil microorganisms, the ruderal strategists had higher productivity but lower stability, while the tolerant strategists had higher stability and lower productivity, leading to the tradeoff between productivity and stability within and across above- and below-ground communities.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The METHYLTRANSFERASE B-SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m6A modification. METHYLTRANSFERASE B-SERRATE 相互作用介导了 microRNA 生物发生和 RNA m6A 修饰的相互调控。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-29 DOI: 10.1111/jipb.13770
Haiyan Bai, Yanghuan Dai, Panting Fan, Yiming Zhou, Xiangying Wang, Jingjing Chen, Yuzhe Jiao, Chang Du, Zhuoxi Huang, Yuting Xie, Xiaoyu Guo, Xiaoqiang Lang, Yongqing Ling, Yizhen Deng, Qi Liu, Shengbo He, Zhonghui Zhang

In eukaryotes, RNA N6-methyladenosine (m6A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m6A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although m6A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)-SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m6A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid-liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m6A modification and miRNA biogenesis.

在真核生物中,RNA N6-甲基腺苷(m6A)修饰和微RNA(miRNA)介导的RNA沉默是两种关键的表观遗传调控机制。m6A 甲基转移酶复合物(MTC)和微处理器复合物都经过液-液相分离,形成无核膜细胞器。尽管 m6A 甲基转移酶已被证明能积极调控 miRNA 的生物发生,但 MTC 与微处理器复合物之间的相互调控机制仍未确定。在这里,我们证明了 MTC 和微处理器复合体通过 METHYLTRANSFERASE B (MTB)-SERRATE (SE) 相互作用模块相互关联。通过减少微处理器复合体与初级miRNA(pri-miRNA)及其各自的MIRNA位点的结合,敲除MTB会损害miRNA的生物发生。此外,SE 功能的丧失导致整个转录组的 m6A 修饰紊乱。进一步的生化测定和光漂白后荧光恢复(FRAP)测定表明,SE 能增强 MTC 的液-液相分离和可溶性。此外,在 SE 突变体背景下,MTC 在染色质上的保留能力增强,与 RNA 底物的结合能力减弱。总之,我们的研究结果揭示了 RNA m6A 修饰与 miRNA 生物发生之间的实质性调控相互作用。
{"title":"The METHYLTRANSFERASE B-SERRATE interaction mediates the reciprocal regulation of microRNA biogenesis and RNA m<sup>6</sup>A modification.","authors":"Haiyan Bai, Yanghuan Dai, Panting Fan, Yiming Zhou, Xiangying Wang, Jingjing Chen, Yuzhe Jiao, Chang Du, Zhuoxi Huang, Yuting Xie, Xiaoyu Guo, Xiaoqiang Lang, Yongqing Ling, Yizhen Deng, Qi Liu, Shengbo He, Zhonghui Zhang","doi":"10.1111/jipb.13770","DOIUrl":"https://doi.org/10.1111/jipb.13770","url":null,"abstract":"<p><p>In eukaryotes, RNA N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification and microRNA (miRNA)-mediated RNA silencing represent two critical epigenetic regulatory mechanisms. The m<sup>6</sup>A methyltransferase complex (MTC) and the microprocessor complex both undergo liquid-liquid phase separation to form nuclear membraneless organelles. Although m<sup>6</sup>A methyltransferase has been shown to positively regulate miRNA biogenesis, a mechanism of reciprocal regulation between the MTC and the microprocessor complex has remained elusive. Here, we demonstrate that the MTC and the microprocessor complex associate with each other through the METHYLTRANSFERASE B (MTB)-SERRATE (SE) interacting module. Knockdown of MTB impaired miRNA biogenesis by diminishing microprocessor complex binding to primary miRNAs (pri-miRNAs) and their respective MIRNA loci. Additionally, loss of SE function led to disruptions in transcriptome-wide m<sup>6</sup>A modification. Further biochemical assays and fluorescence recovery after photobleaching (FRAP) assay indicated that SE enhances the liquid-liquid phase separation and solubility of the MTC. Moreover, the MTC exhibited enhanced retention on chromatin and diminished binding to its RNA substrates in the se mutant background. Collectively, our results reveal the substantial regulatory interplay between RNA m<sup>6</sup>A modification and miRNA biogenesis.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of cryptochrome-mediated blue light signaling by the ABI4-PIF4 module. ABI4-PIF4 模块对隐色素介导的蓝光信号转导的调控。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-26 DOI: 10.1111/jipb.13769
Pengyu Song, Zidan Yang, Huaichang Wang, Fangfang Wan, Dingming Kang, Wenming Zheng, Zhizhong Gong, Jigang Li

ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.

乙酰丙酸无感 4(ABI4)是一个关键的转录因子,它协调植物生长发育的多个方面以及植物对环境胁迫的反应。ABI4 已被证明参与调控幼苗的光形态发生;然而,其潜在机制仍然难以捉摸。在这里,我们发现 ABI4 在调控光形态发生中的作用一般受蔗糖调控,但在所有测试的蔗糖浓度下,ABI4 都能促进拟南芥幼苗在蓝光(B)下的下胚轴伸长。我们进一步发现,ABI4 与 PHYTOCHROME INTERACTING FACTOR 4(PIF4)--一种特征明确的生长促进转录因子--发生了物理相互作用,并在翻译后促进了 PIF4 蛋白在 B 光下的积累。进一步的分析表明,ABI4 可直接与 B 光感光隐色体(CRYs)相互作用,抑制 CRYs 与 PIF4 之间的相互作用,从而缓解 CRY 介导的对 PIF4 蛋白积累的抑制。此外,虽然 ABI4 可直接激活自身的表达,但 CRYs 可增强而 PIF4 可抑制 ABI4 介导的 ABI4 启动子的激活。总之,我们的研究表明,ABI4-PIF4 模块在拟南芥中介导 CRY 诱导的 B 光信号转导中起着重要作用。
{"title":"Regulation of cryptochrome-mediated blue light signaling by the ABI4-PIF4 module.","authors":"Pengyu Song, Zidan Yang, Huaichang Wang, Fangfang Wan, Dingming Kang, Wenming Zheng, Zhizhong Gong, Jigang Li","doi":"10.1111/jipb.13769","DOIUrl":"https://doi.org/10.1111/jipb.13769","url":null,"abstract":"<p><p>ABSCISIC ACID-INSENSITIVE 4 (ABI4) is a pivotal transcription factor which coordinates multiple aspects of plant growth and development as well as plant responses to environmental stresses. ABI4 has been shown to be involved in regulating seedling photomorphogenesis; however, the underlying mechanism remains elusive. Here, we show that the role of ABI4 in regulating photomorphogenesis is generally regulated by sucrose, but ABI4 promotes hypocotyl elongation of Arabidopsis seedlings under blue (B) light under all tested sucrose concentrations. We further show that ABI4 physically interacts with PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a well-characterized growth-promoting transcription factor, and post-translationally promotes PIF4 protein accumulation under B light. Further analyses indicate that ABI4 directly interacts with the B light photoreceptors cryptochromes (CRYs) and inhibits the interactions between CRYs and PIF4, thus relieving CRY-mediated repression of PIF4 protein accumulation. In addition, while ABI4 could directly activate its own expression, CRYs enhance, whereas PIF4 inhibits, ABI4-mediated activation of the ABI4 promoter. Together, our study demonstrates that the ABI4-PIF4 module plays an important role in mediating CRY-induced B light signaling in Arabidopsis.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of humidity-sensitive genic male sterility in maize and wheat for hybrid seed production. 在玉米和小麦中产生对湿度敏感的基因雄性不育,以生产杂交种子。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-26 DOI: 10.1111/jipb.13768
Xingchen Xiong, Dan Wang, Changfeng Guo, Guiqiang Fan, Yingchun Zhang, Bo Song, Binzhu Hou, Yuanyuan Yan, Chuanxiao Xie, Xiaoduo Lu, Chunyi Zhang, Xiaoquan Qi
{"title":"Generation of humidity-sensitive genic male sterility in maize and wheat for hybrid seed production.","authors":"Xingchen Xiong, Dan Wang, Changfeng Guo, Guiqiang Fan, Yingchun Zhang, Bo Song, Binzhu Hou, Yuanyuan Yan, Chuanxiao Xie, Xiaoduo Lu, Chunyi Zhang, Xiaoquan Qi","doi":"10.1111/jipb.13768","DOIUrl":"https://doi.org/10.1111/jipb.13768","url":null,"abstract":"","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A PpEIL2/3-PpNAC1-PpWRKY14 module regulates fruit ripening by modulating ethylene production in peach. PpEIL2/3-PpNAC1-PpWRKY14 模块通过调节乙烯的产生来调控桃的果实成熟。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-26 DOI: 10.1111/jipb.13761
Yudi Liu, Wen Xiao, Liao Liao, Beibei Zheng, Yunpeng Cao, Yun Zhao, Ruo-Xi Zhang, Yuepeng Han

WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.

WRKY 转录因子在植物抵抗各种胁迫的过程中发挥着关键作用,但它们在果实成熟过程中的作用在很大程度上仍不为人所知。在此,我们报告了参与调控桃果实成熟的 WRKY 基因 PpWRKY14。在整个果实发育过程中,PpWRKY14 的表达呈上升趋势。PpWRKY14 是桃果实成熟主调控因子 PpNAC1 的靶基因。PpWRKY14 可直接与 PpACS1 和 PpACO1 的启动子结合,诱导它们的表达,当 PpWRKY14 与 PpNAC1 形成二聚体时,这种诱导作用大大增强。然而,PpNAC1 的转录可被两个 EIN3/EIL1 基因 PpEIL2 和 PpEIL3 直接抑制。PpEIL2/3 基因在果实发育早期高表达,但在成熟期其表达量会显著下降,从而抑制 PpNAC1 的表达。这些结果表明,PpEIL2/3-PpNAC1-PpWRKY14 模块通过调节乙烯的产生来调控桃果实的成熟。我们的研究结果有助于深入了解EIN3/EIL1和WRKY基因在果实成熟过程中的调控作用。
{"title":"A PpEIL2/3-PpNAC1-PpWRKY14 module regulates fruit ripening by modulating ethylene production in peach.","authors":"Yudi Liu, Wen Xiao, Liao Liao, Beibei Zheng, Yunpeng Cao, Yun Zhao, Ruo-Xi Zhang, Yuepeng Han","doi":"10.1111/jipb.13761","DOIUrl":"https://doi.org/10.1111/jipb.13761","url":null,"abstract":"<p><p>WRKY transcription factors play key roles in plant resistance to various stresses, but their roles in fruit ripening remain largely unknown. Here, we report a WRKY gene PpWRKY14 involved in the regulation of fruit ripening in peach. The expression of PpWRKY14 showed an increasing trend throughout fruit development. PpWRKY14 was a target gene of PpNAC1, a master regulator of peach fruit ripening. PpWRKY14 could directly bind to the promoters of PpACS1 and PpACO1 to induce their expression, and this induction was greatly enhanced when PpWRKY14 formed a dimer with PpNAC1. However, the transcription of PpNAC1 could be directly suppressed by two EIN3/EIL1 genes, PpEIL2 and PpEIL3. The PpEIL2/3 genes were highly expressed at the early stages of fruit development, but their expression was programmed to decrease significantly during the ripening stage, thus derepressing the expression of PpNAC1. These results suggested a PpEIL2/3-PpNAC1-PpWRKY14 module that regulates fruit ripening by modulating ethylene production in peach. Our results provided an insight into the regulatory roles of EIN3/EIL1 and WRKY genes in fruit ripening.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anchorene, a carotenoid-derived growth regulator, modulates auxin homeostasis by suppressing GH3-mediated auxin conjugation. Anchorene 是一种类胡萝卜素衍生的生长调节剂,它通过抑制 GH3 介导的辅助素共轭作用来调节辅助素平衡。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-26 DOI: 10.1111/jipb.13764
Danping Ke, Yinpeng Xie, Haipeng Li, Liqun Hu, Yi He, Chao Guo, Yahui Zhai, Jinggong Guo, Kun Li, Zongyan Chu, Junli Zhang, Xuebin Zhang, Salim Al-Babili, Kai Jiang, Yuchen Miao, Kun-Peng Jia

Anchorene, identified as an endogenous bioactive carotenoid-derived dialdehyde and diapocarotenoid, affects root development by modulating auxin homeostasis. However, the precise interaction between anchorene and auxin, as well as the mechanisms by which anchorene modulates auxin levels, remain largely elusive. In this study, we conducted a comparative analysis of anchorene's bioactivities alongside auxin and observed that anchorene induces multifaceted auxin-like effects. Through genetic and pharmacological examinations, we revealed that anchorene's auxin-like activities depend on the indole-3-pyruvate-dependent auxin biosynthesis pathway, as well as the auxin inactivation pathway mediated by Group II Gretchen Hagen 3 (GH3) proteins that mainly facilitate the conjugation of indole-3-acetic acid (IAA) to amino acids, leading to the formation of inactivated storage forms. Our measurements indicated that anchorene treatment elevates IAA levels while reducing the quantities of inactivated IAA-amino acid conjugates and oxIAA. RNA sequencing further revealed that anchorene triggers the expression of numerous auxin-responsive genes in a manner reliant on Group II GH3s. Additionally, our in vitro enzymatic assays and biolayer interferometry (BLI) assay demonstrated anchorene's robust suppression of GH3.17-mediated IAA conjugation with glutamate. Collectively, our findings highlight the significant role of carotenoid-derived metabolite anchorene in modulating auxin homeostasis, primarily through the repression of GH3-mediated IAA conjugation and inactivation pathways, offering novel insights into the regulatory mechanisms of plant bioactive apocarotenoids.

锚链烯是一种内源生物活性类胡萝卜素衍生二醛和二apocarotenoid,它通过调节辅素平衡来影响根系发育。然而,锚链烯与辅素之间的精确相互作用以及锚链烯调节辅素水平的机制在很大程度上仍然难以捉摸。在本研究中,我们比较分析了鲥鱼素与辅助素的生物活性,观察到鲥鱼素能诱导多方面的辅助素样效应。通过遗传学和药理学研究,我们发现锚固素的类助剂活性依赖于吲哚-3-丙酮酸依赖性助剂生物合成途径,以及由第二组格雷琴-哈根 3(GH3)蛋白介导的助剂失活途径,后者主要促进吲哚-3-乙酸(IAA)与氨基酸的共轭,从而形成失活的贮存形式。我们的测量结果表明,凤尾蕨素处理可提高IAA水平,同时减少失活的IAA-氨基酸共轭物和oxIAA的数量。RNA 测序进一步表明,凤尾蕨素以依赖于第二类 GH3s 的方式触发了大量辅助素响应基因的表达。此外,我们的体外酶学测定和生物层干涉测量法(BLI)测定表明,锚链烯能有力地抑制 GH3.17 介导的 IAA 与谷氨酸的共轭。总之,我们的研究结果凸显了类胡萝卜素衍生代谢物凤尾蕨素主要通过抑制 GH3 介导的 IAA 共轭和失活途径在调节植物生长素平衡中的重要作用,为了解植物生物活性类胡萝卜素的调控机制提供了新的视角。
{"title":"Anchorene, a carotenoid-derived growth regulator, modulates auxin homeostasis by suppressing GH3-mediated auxin conjugation.","authors":"Danping Ke, Yinpeng Xie, Haipeng Li, Liqun Hu, Yi He, Chao Guo, Yahui Zhai, Jinggong Guo, Kun Li, Zongyan Chu, Junli Zhang, Xuebin Zhang, Salim Al-Babili, Kai Jiang, Yuchen Miao, Kun-Peng Jia","doi":"10.1111/jipb.13764","DOIUrl":"https://doi.org/10.1111/jipb.13764","url":null,"abstract":"<p><p>Anchorene, identified as an endogenous bioactive carotenoid-derived dialdehyde and diapocarotenoid, affects root development by modulating auxin homeostasis. However, the precise interaction between anchorene and auxin, as well as the mechanisms by which anchorene modulates auxin levels, remain largely elusive. In this study, we conducted a comparative analysis of anchorene's bioactivities alongside auxin and observed that anchorene induces multifaceted auxin-like effects. Through genetic and pharmacological examinations, we revealed that anchorene's auxin-like activities depend on the indole-3-pyruvate-dependent auxin biosynthesis pathway, as well as the auxin inactivation pathway mediated by Group II Gretchen Hagen 3 (GH3) proteins that mainly facilitate the conjugation of indole-3-acetic acid (IAA) to amino acids, leading to the formation of inactivated storage forms. Our measurements indicated that anchorene treatment elevates IAA levels while reducing the quantities of inactivated IAA-amino acid conjugates and oxIAA. RNA sequencing further revealed that anchorene triggers the expression of numerous auxin-responsive genes in a manner reliant on Group II GH3s. Additionally, our in vitro enzymatic assays and biolayer interferometry (BLI) assay demonstrated anchorene's robust suppression of GH3.17-mediated IAA conjugation with glutamate. Collectively, our findings highlight the significant role of carotenoid-derived metabolite anchorene in modulating auxin homeostasis, primarily through the repression of GH3-mediated IAA conjugation and inactivation pathways, offering novel insights into the regulatory mechanisms of plant bioactive apocarotenoids.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genome of Eleocharis vivipara elucidates the genetics of C3-C4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. Eleocharis vivipara 的基因组阐明了 C3-C4 光合可塑性的遗传学以及香柏科植物核型的进化。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-23 DOI: 10.1111/jipb.13765
Hongbing Liu, Hang Zhao, Yanwen Zhang, Xiuli Li, Yi Zuo, Zhen Wu, Kaining Jin, Wenfei Xian, Wenzheng Wang, Weidong Ning, Zijian Liu, Xiaoxiao Zhao, Lei Wang, Rowan F Sage, Tiegang Lu, Matt Stata, Shifeng Cheng

Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.

Eleocharis vivipara 是一种两栖莎草科植物,具有多种显著特性,其中最突出的是它可以交替使用水下的 C3 光合作用和陆地上的 C4 光合作用。然而,基因组数据的缺乏阻碍了它在进化和遗传研究中的应用。在这里,我们展示了一个高质量的 E. vivipara 基因组,这是 Eleocharis 属的第一个染色体级基因组,大小约为 965.22 Mb,主要分布在 10 条染色体上。其Hi-C模式、染色体聚类结果以及两个亚群中一对一的基因组同源关系表明其为四倍体结构,染色体数为2n = 4x = 20。系统发育分析表明,E. vivipara 在大约 3296 万年前(Mya)从 Cyperus esculentus 分化而来,并在大约 350 万年前经历了一次全基因组复制(WGD)。在 E. vivipara 及其近缘种的染色体之间发现了许多融合和分裂事件。我们证明,E. vivipara 具有全中心体,这一染色体特征可以保持这种染色体重排的稳定性。实验移植和横截面研究表明,它的陆生秆具有 C4 Kranz 解剖结构,束鞘(BS)细胞中的叶绿体数量增加。基因表达和加权基因共表达网络分析(WGCNA)显示,与 C4 途径相关的核心基因的表达量总体升高,与改良的茎秆解剖结构和光合作用效率相关的基因显著富集。我们发现了E. vivipara中烟酰胺腺嘌呤二核苷酸-苹果酸酶和磷酸烯醇丙酮酸羧激酶混合型C4光合作用的证据,并推测C4光合作用的进化早于WGD事件。总之,我们的研究结果不仅揭示了香柏科植物 E. vivipara 和核型的进化过程,还为 C3 和 C4 光合作用之间的过渡提供了宝贵的见解,为作物改良和育种提供了广阔的前景。
{"title":"The genome of Eleocharis vivipara elucidates the genetics of C<sub>3</sub>-C<sub>4</sub> photosynthetic plasticity and karyotype evolution in the Cyperaceae.","authors":"Hongbing Liu, Hang Zhao, Yanwen Zhang, Xiuli Li, Yi Zuo, Zhen Wu, Kaining Jin, Wenfei Xian, Wenzheng Wang, Weidong Ning, Zijian Liu, Xiaoxiao Zhao, Lei Wang, Rowan F Sage, Tiegang Lu, Matt Stata, Shifeng Cheng","doi":"10.1111/jipb.13765","DOIUrl":"https://doi.org/10.1111/jipb.13765","url":null,"abstract":"<p><p>Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C<sub>3</sub> photosynthesis underwater and C<sub>4</sub> photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C<sub>4</sub> Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C<sub>4</sub> pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C<sub>4</sub> photosynthesis in E. vivipara, and hypothesize that the evolution of C<sub>4</sub> photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C<sub>3</sub> and C<sub>4</sub> photosynthesis, offering promising avenues for crop improvement and breeding.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OsAGO2-OsNAC300-OsNAP module regulates leaf senescence in rice. OsAGO2-OsNAC300-OsNAP 模块调控水稻叶片的衰老。
IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1111/jipb.13766
Shaoyan Zheng, Junyu Chen, Ying He, Jingqin Lu, Hong Chen, Zipeng Liang, Junqi Zhang, Zhenlan Liu, Jing Li, Chuxiong Zhuang

Leaves play a crucial role in the growth and development of rice (Oryza sativa) as sites for the production of photosynthesis. Early leaf senescence leads to substantial drops in rice yields. Whether and how DNA methylation regulates gene expression and affects leaf senescence remains elusive. Here, we demonstrate that mutations in rice ARGONAUTE 2 (OsAGO2) lead to premature leaf senescence, with chloroplasts in Osago2 having lower chlorophyll content and an abnormal thylakoid structure compared with those from wild-type plants. We show that OsAGO2 associates with a 24-nt microRNA and binds to the promoter region of OsNAC300, which causes DNA methylation and suppressed expression of OsNAC300. Overexpressing OsNAC300 causes the similar premature leaf senescence as Osago2 mutants and knocking out OsNAC300 in the Osago2 mutant background suppresses the early senescence of Osago2 mutants. Based on yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays, we propose that OsNAC300 directly regulates transcription of the key rice aging gene NAC-like, activated by APETALA3/PISTILLATA (OsNAP) to control leaf senescence. Our results unravel a previously unknown epigenetic regulatory mechanism underlying leaf senescence in which OsAGO2-OsNAC300-OsNAP acts as a key regulatory module of leaf senescence to maintain leaf function.

叶片作为光合作用的场所,在水稻(Oryza sativa)的生长发育过程中起着至关重要的作用。早期叶片衰老会导致水稻产量大幅下降。DNA 甲基化是否以及如何调控基因表达并影响叶片衰老仍是一个未知数。在这里,我们证明了水稻 ARGONAUTE 2(OsAGO2)的突变会导致叶片过早衰老,与野生型植株相比,Osago2 的叶绿体叶绿素含量较低,类木质结构异常。我们发现 OsAGO2 与 24-nt microRNA 结合,并与 OsNAC300 的启动子区域结合,从而导致 DNA 甲基化,抑制 OsNAC300 的表达。过量表达OsNAC300会导致与Osago2突变体相似的叶片过早衰老,而在Osago2突变体背景下敲除OsNAC300会抑制Osago2突变体的早期衰老。基于酵母单杂交、双荧光素酶和电泳迁移实验,我们提出 OsNAC300 直接调控关键水稻衰老基因 NAC-like 的转录,由 APETALA3/PISTILLATA (OsNAP) 激活,从而控制叶片衰老。我们的研究结果揭示了一种之前未知的叶片衰老的表观遗传调控机制,其中 OsAGO2-OsNAC300-OsNAP 作为叶片衰老的一个关键调控模块维持叶片功能。
{"title":"The OsAGO2-OsNAC300-OsNAP module regulates leaf senescence in rice.","authors":"Shaoyan Zheng, Junyu Chen, Ying He, Jingqin Lu, Hong Chen, Zipeng Liang, Junqi Zhang, Zhenlan Liu, Jing Li, Chuxiong Zhuang","doi":"10.1111/jipb.13766","DOIUrl":"https://doi.org/10.1111/jipb.13766","url":null,"abstract":"<p><p>Leaves play a crucial role in the growth and development of rice (Oryza sativa) as sites for the production of photosynthesis. Early leaf senescence leads to substantial drops in rice yields. Whether and how DNA methylation regulates gene expression and affects leaf senescence remains elusive. Here, we demonstrate that mutations in rice ARGONAUTE 2 (OsAGO2) lead to premature leaf senescence, with chloroplasts in Osago2 having lower chlorophyll content and an abnormal thylakoid structure compared with those from wild-type plants. We show that OsAGO2 associates with a 24-nt microRNA and binds to the promoter region of OsNAC300, which causes DNA methylation and suppressed expression of OsNAC300. Overexpressing OsNAC300 causes the similar premature leaf senescence as Osago2 mutants and knocking out OsNAC300 in the Osago2 mutant background suppresses the early senescence of Osago2 mutants. Based on yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays, we propose that OsNAC300 directly regulates transcription of the key rice aging gene NAC-like, activated by APETALA3/PISTILLATA (OsNAP) to control leaf senescence. Our results unravel a previously unknown epigenetic regulatory mechanism underlying leaf senescence in which OsAGO2-OsNAC300-OsNAP acts as a key regulatory module of leaf senescence to maintain leaf function.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Integrative Plant Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1