{"title":"A novel optimization method for attenuating multi-interferences in satellite communication earth station","authors":"Kang Luo, Qing Wang, Kai Yang, Bin Li","doi":"10.1002/sat.1512","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The study of multi-interferences plays a pivotal role in advancing the development of next-generation, high-performance communication devices. In this paper, we propose a design approach for auxiliary antennas aimed at mitigating multi-interference challenges within satellite communication earth stations. We introduce an eight-element auxiliary antenna with an elliptical beam comprising dual radiation patches and a T-shaped power divider, to attenuate interferences originating from three distinct directions. To enhance the azimuthal beamwidth, we adjust the dimensions of the ground plane and extend the substrate. At a frequency of 12.5 GHz, the antenna exhibits a 3-dB beam spacing of 38° and an azimuthal width of 162°, with a maximum gain of 7.9 dBi. We employ a sidelobe canceller to optimize the antenna's performance, and both simulations and measurements affirm that the auxiliary antenna achieves an extinction interference cancelation ratio exceeding 27 dB under all circumstances.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 4","pages":"273-285"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1512","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The study of multi-interferences plays a pivotal role in advancing the development of next-generation, high-performance communication devices. In this paper, we propose a design approach for auxiliary antennas aimed at mitigating multi-interference challenges within satellite communication earth stations. We introduce an eight-element auxiliary antenna with an elliptical beam comprising dual radiation patches and a T-shaped power divider, to attenuate interferences originating from three distinct directions. To enhance the azimuthal beamwidth, we adjust the dimensions of the ground plane and extend the substrate. At a frequency of 12.5 GHz, the antenna exhibits a 3-dB beam spacing of 38° and an azimuthal width of 162°, with a maximum gain of 7.9 dBi. We employ a sidelobe canceller to optimize the antenna's performance, and both simulations and measurements affirm that the auxiliary antenna achieves an extinction interference cancelation ratio exceeding 27 dB under all circumstances.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols