首页 > 最新文献

International Journal of Satellite Communications and Networking最新文献

英文 中文
Featured Cover
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-12-16 DOI: 10.1002/sat.1542
Tongguang Zhang, Chunhong Liu, Qiaomei Tian, Bo Cheng

The cover image is based on the article Cloud-Edge Collaboration-Based Multi-Cluster System for Space-Ground Integrated Network by Tongguang Zhang et al., https://doi.org/10.1002/sat.1541.***

封面图片来自张同光等人撰写的文章《基于云边协作的天地一体化网络多集群系统》,https://doi.org/10.1002/sat.1541.***。
{"title":"Featured Cover","authors":"Tongguang Zhang,&nbsp;Chunhong Liu,&nbsp;Qiaomei Tian,&nbsp;Bo Cheng","doi":"10.1002/sat.1542","DOIUrl":"https://doi.org/10.1002/sat.1542","url":null,"abstract":"<p>The cover image is based on the article <i>Cloud-Edge Collaboration-Based Multi-Cluster System for Space-Ground Integrated Network</i> by Tongguang Zhang et al., https://doi.org/10.1002/sat.1541.***\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloud-Edge Collaboration-Based Multi-Cluster System for Space-Ground Integrated Network
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-11-29 DOI: 10.1002/sat.1541
Tongguang Zhang, Chunhong Liu, Qiaomei Tian, Bo Cheng

As global informationization deepens, the importance of Space-Ground Integrated Network (SGIN) as a new network architecture becomes increasingly prominent. SGIN combines the advantages of ground and space networks, enabling global information interconnection and sharing through various communication means such as satellites, drones, and ground stations. However, due to its complex network environment and diverse communication requirements, traditional network architectures struggle to meet its demands for efficiency, stability, and scalability. To address these challenges, we focus on the research, design, and implementation of a cloud-edge collaboration-based multi-cluster system for SGIN. The goal is to construct an efficient, stable, and scalable network system capable of providing seamless global coverage and efficient communication within SGIN. We design a multi-cluster system architecture based on container technology, leveraging cloud and edge computing techniques for dynamic resource allocation and efficient utilization. This architecture aims to meet the diverse network service requirements of ground terminals, enhancing responsiveness, efficiency, resilience, and reliability of network services. Additionally, we introduce a multipath data transmission mechanism to support the transfer of large-scale data, such as remote sensing images. A simulation platform tailored for SGIN is developed, demonstrating the feasibility of the multi-cluster system and the effectiveness of multipath data transmission.

{"title":"Cloud-Edge Collaboration-Based Multi-Cluster System for Space-Ground Integrated Network","authors":"Tongguang Zhang,&nbsp;Chunhong Liu,&nbsp;Qiaomei Tian,&nbsp;Bo Cheng","doi":"10.1002/sat.1541","DOIUrl":"https://doi.org/10.1002/sat.1541","url":null,"abstract":"<div>\u0000 \u0000 <p>As global informationization deepens, the importance of Space-Ground Integrated Network (SGIN) as a new network architecture becomes increasingly prominent. SGIN combines the advantages of ground and space networks, enabling global information interconnection and sharing through various communication means such as satellites, drones, and ground stations. However, due to its complex network environment and diverse communication requirements, traditional network architectures struggle to meet its demands for efficiency, stability, and scalability. To address these challenges, we focus on the research, design, and implementation of a cloud-edge collaboration-based multi-cluster system for SGIN. The goal is to construct an efficient, stable, and scalable network system capable of providing seamless global coverage and efficient communication within SGIN. We design a multi-cluster system architecture based on container technology, leveraging cloud and edge computing techniques for dynamic resource allocation and efficient utilization. This architecture aims to meet the diverse network service requirements of ground terminals, enhancing responsiveness, efficiency, resilience, and reliability of network services. Additionally, we introduce a multipath data transmission mechanism to support the transfer of large-scale data, such as remote sensing images. A simulation platform tailored for SGIN is developed, demonstrating the feasibility of the multi-cluster system and the effectiveness of multipath data transmission.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"40-60"},"PeriodicalIF":0.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of Communication Link Availability for Co-Located GEO Satellites Due to Their Orbital Movements
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-11-21 DOI: 10.1002/sat.1540
Umit Cezmi Yilmaz

It is becoming very common to use multiple GEO satellite inside the same longitude slot. There are different co-location strategies for that purpose but the most common one is to use “eccentricity and inclination separation” especially if the whole fleet is being controlled by the same operator. In this study, the determination of link availability by also considering the potential RF Interference between co-located satellites are examined. The main objective of the study is not to protect from the interference but to determine whether the satellites' orbital behavior may decrease the link availability and how much if they have potential of RF interference. In the study, two co-located GEO satellites are shown as a sample, but in principle, the philosophy demonstrated here can be used for three or more co-located GEO satellites.

在同一经度槽内使用多颗地球同步轨道卫星已变得非常普遍。为此,有不同的共址策略,但最常见的是使用 "偏心和倾角分离",尤其是当整个卫星群由同一运营商控制时。在这项研究中,还考虑了共址卫星之间潜在的射频干扰,从而确定链路的可用性。研究的主要目的不是为了防止干扰,而是确定卫星的轨道行为是否会降低链路可用性,以及如果卫星有可能产生射频干扰,会降低多少。本研究以两颗共址地球同步轨道卫星为样本,但原则上,这里展示的理念可用于三颗或更多颗共址地球同步轨道卫星。
{"title":"Determination of Communication Link Availability for Co-Located GEO Satellites Due to Their Orbital Movements","authors":"Umit Cezmi Yilmaz","doi":"10.1002/sat.1540","DOIUrl":"https://doi.org/10.1002/sat.1540","url":null,"abstract":"<div>\u0000 \u0000 <p>It is becoming very common to use multiple GEO satellite inside the same longitude slot. There are different co-location strategies for that purpose but the most common one is to use “eccentricity and inclination separation” especially if the whole fleet is being controlled by the same operator. In this study, the determination of link availability by also considering the potential RF Interference between co-located satellites are examined. The main objective of the study is not to protect from the interference but to determine whether the satellites' orbital behavior may decrease the link availability and how much if they have potential of RF interference. In the study, two co-located GEO satellites are shown as a sample, but in principle, the philosophy demonstrated here can be used for three or more co-located GEO satellites.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"34-39"},"PeriodicalIF":0.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3D LEO Channel Model Based on GBSM for Satellite-Ground Communication Scenario 基于卫星-地面通信场景 GBSM 的 3D LEO 信道模型
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-11-13 DOI: 10.1002/sat.1539
Zhaoyang Su, Yi Yin, Xianglong Duan, Zijie Han, Tao Zhou, Liu Liu

Low earth orbit (LEO) satellites have the characteristics of low communication delay, low deployment cost, and wide coverage, which have become an important component of the 6G air-space-ground integrated information network. However, satellite-ground communication has a large propagation distance, complex fading, and fast terminal movement speed, causing the channel characteristics different from terrestrial communication networks. Therefore, channel modeling is necessary when deploying a satellite-ground communication network. In this paper, a 3D geometry-based stochastic model (GBSM) is proposed for satellite-ground communication links. The proposed channel model includes several environments such as urban, suburban, and rural. Based on this model, the channel impulse response (CIR) can be obtained, and the closed-form expression of spatial-temporal correlation function and Doppler power spectrum density are derived. Through simulation, the characteristics of large-scale fading and small-scale fading are analyzed, which depict the significant differences from the terrestrial networks. The relevant results can provide contributions to the design of future satellite-ground communication systems.

{"title":"A 3D LEO Channel Model Based on GBSM for Satellite-Ground Communication Scenario","authors":"Zhaoyang Su,&nbsp;Yi Yin,&nbsp;Xianglong Duan,&nbsp;Zijie Han,&nbsp;Tao Zhou,&nbsp;Liu Liu","doi":"10.1002/sat.1539","DOIUrl":"https://doi.org/10.1002/sat.1539","url":null,"abstract":"<div>\u0000 \u0000 <p>Low earth orbit (LEO) satellites have the characteristics of low communication delay, low deployment cost, and wide coverage, which have become an important component of the 6G air-space-ground integrated information network. However, satellite-ground communication has a large propagation distance, complex fading, and fast terminal movement speed, causing the channel characteristics different from terrestrial communication networks. Therefore, channel modeling is necessary when deploying a satellite-ground communication network. In this paper, a 3D geometry-based stochastic model (GBSM) is proposed for satellite-ground communication links. The proposed channel model includes several environments such as urban, suburban, and rural. Based on this model, the channel impulse response (CIR) can be obtained, and the closed-form expression of spatial-temporal correlation function and Doppler power spectrum density are derived. Through simulation, the characteristics of large-scale fading and small-scale fading are analyzed, which depict the significant differences from the terrestrial networks. The relevant results can provide contributions to the design of future satellite-ground communication systems.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"23-33"},"PeriodicalIF":0.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Satellite Link Security Against Drone Eavesdropping Through Cooperative Communication
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-10-15 DOI: 10.1002/sat.1538
Rajnish Kumar, Shlomi Arnon

Integrated satellite terrestrial networks (ISTNs) are emerging as a promising next-generation communication technology, for example, B5G and 6G, with low-earth orbit (LEO) satellites playing a growing role. However, the complex and unique characteristics of ISTNs make them more susceptible to cyberattacks. Recently, the use of drones for public and private services has increased the risk of eavesdropping on LEO satellite links. Such scenario presents an extremely challenging environment due to dynamic nature of LEO satellite and drone along with atmospheric attenuation at sub-THz frequencies. This study proposes a novel adaptive power-bandwidth cooperative scheme designed to mitigate the likelihood of eavesdropping attacks on LEO satellite links communicating with a ground station when a drone is within the line of sight. The mathematical algorithm dynamically adapts the resources to maximize the normalized secrecy capacity in this challenging scenario while maintaining a reasonable signal-to-noise ratio (SNR) at the legitimate receiver. The adaptive scheme involves strategic cooperation with a nearby terrestrial third party to amplify and forward the satellite signal to the ground station receiver. The simulation results demonstrate the effectiveness of the proposed algorithm, showing significant improvements (> 70%) compared to the non-adaptive scheme over a wide range of elevation angles.

{"title":"Enhancing Satellite Link Security Against Drone Eavesdropping Through Cooperative Communication","authors":"Rajnish Kumar,&nbsp;Shlomi Arnon","doi":"10.1002/sat.1538","DOIUrl":"https://doi.org/10.1002/sat.1538","url":null,"abstract":"<p>Integrated satellite terrestrial networks (ISTNs) are emerging as a promising next-generation communication technology, for example, B5G and 6G, with low-earth orbit (LEO) satellites playing a growing role. However, the complex and unique characteristics of ISTNs make them more susceptible to cyberattacks. Recently, the use of drones for public and private services has increased the risk of eavesdropping on LEO satellite links. Such scenario presents an extremely challenging environment due to dynamic nature of LEO satellite and drone along with atmospheric attenuation at sub-THz frequencies. This study proposes a novel adaptive power-bandwidth cooperative scheme designed to mitigate the likelihood of eavesdropping attacks on LEO satellite links communicating with a ground station when a drone is within the line of sight. The mathematical algorithm dynamically adapts the resources to maximize the normalized secrecy capacity in this challenging scenario while maintaining a reasonable signal-to-noise ratio (SNR) at the legitimate receiver. The adaptive scheme involves strategic cooperation with a nearby terrestrial third party to amplify and forward the satellite signal to the ground station receiver. The simulation results demonstrate the effectiveness of the proposed algorithm, showing significant improvements (&gt; 70%) compared to the non-adaptive scheme over a wide range of elevation angles.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"10-22"},"PeriodicalIF":0.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1538","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error Performance of a NOMA-Based Satellite Communication System
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-09-26 DOI: 10.1002/sat.1537
Priyanka Prasad, Arti MK, Aarti Jain

The paper analyzes the error performance of a basic satellite-terrestrial communication system, which uses a satellite as a source and receiver at the earth station as a destination. The system model accounts for an independent channel of fading and applies the theory of non-orthogonal multiple access (NOMA) to provide fair resource sharing and better connectivity among multiple users. The paper investigates the transmission characteristics and derives the expressions for the total symbol error rate (SER) of the proposed system model. Furthermore, it examines the transmission efficiency with the help of the elevation angle between the source and the destination. The paper also explores the impact of different fading environments on SER.

{"title":"Error Performance of a NOMA-Based Satellite Communication System","authors":"Priyanka Prasad,&nbsp;Arti MK,&nbsp;Aarti Jain","doi":"10.1002/sat.1537","DOIUrl":"https://doi.org/10.1002/sat.1537","url":null,"abstract":"<div>\u0000 \u0000 <p>The paper analyzes the error performance of a basic satellite-terrestrial communication system, which uses a satellite as a source and receiver at the earth station as a destination. The system model accounts for an independent channel of fading and applies the theory of non-orthogonal multiple access (NOMA) to provide fair resource sharing and better connectivity among multiple users. The paper investigates the transmission characteristics and derives the expressions for the total symbol error rate (SER) of the proposed system model. Furthermore, it examines the transmission efficiency with the help of the elevation angle between the source and the destination. The paper also explores the impact of different fading environments on SER.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"43 1","pages":"1-9"},"PeriodicalIF":0.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Implementation of Transparent Cross-Polarization Interference Compensation in a Wideband Dual-Polarization Satellite Receiver 宽带双极化卫星接收器中透明交叉极化干扰补偿的设计与实现
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-08-19 DOI: 10.1002/sat.1533
Svilen Dimitrov, Vito Dantona, Gerhard Mocker

In this paper, simultaneous transmission on two orthogonal antenna polarizations in a polarization division multiplexing (PDM) fashion is studied for wideband satellite communication links using dual-polarization satellite receivers for the purpose of doubling the data rate. In order to mitigate the cross-polarization interference (XPI), a new digital blind and transparent XPI compensation method is proposed, coined as XPI correlation learning estimation and adaptive reduction (XPI-CLEAR). The received signal-to-noise-and-interference ratio (SNIR) and packet-error rate (PER) performance with this non-data-aided and non-decision-directed method is assessed in a comprehensively modelled XPI channel with effects such as depolarization due to atmospheric conditions, imperfect cross-polarization discrimination (XPD) of the antennas at the transmitter and the receiver, memory effects due to frequency selectivity of the XPD, and differential frequency offset (DFO) between the two channels. The application of the XPI-CLEAR method presents considerable energy efficiency improvements for all the studied XPI channel effects, and is particularly beneficial for higher order modulation. A low-complexity hardware implementation with symbol rates up to 500 MBaud validates the XPI-CLEAR method as a practical solution to increase the data rates of the satellite air interface and to achieve the doubling of the throughput of the satellite link by the use of PDM.

本文针对使用双极化卫星接收器的宽带卫星通信链路,研究了以极化分复用(PDM)方式在两个正交天线极化上同时传输数据的问题,目的是将数据传输速率提高一倍。为了减轻跨极化干扰(XPI),提出了一种新的数字盲透明 XPI 补偿方法,称为 XPI 相关学习估计和自适应降低(XPI-CLEAR)。在一个全面模拟的 XPI 信道中,评估了这种非数据辅助和非决策导向方法的接收信噪比(SNIR)和包误码率(PER)性能,该信道受到的影响包括大气条件导致的去极化、发射器和接收器天线不完善的跨极化分辨(XPD)、XPD 频率选择性导致的记忆效应以及两个信道之间的差频偏移(DFO)。应用 XPI-CLEAR 方法可显著提高所有研究的 XPI 信道效应的能效,尤其有利于高阶调制。符号率高达 500 MBaud 的低复杂度硬件实现验证了 XPI-CLEAR 方法是提高卫星空中接口数据速率和通过使用 PDM 实现卫星链路吞吐量翻番的实用解决方案。
{"title":"Design and Implementation of Transparent Cross-Polarization Interference Compensation in a Wideband Dual-Polarization Satellite Receiver","authors":"Svilen Dimitrov,&nbsp;Vito Dantona,&nbsp;Gerhard Mocker","doi":"10.1002/sat.1533","DOIUrl":"10.1002/sat.1533","url":null,"abstract":"<p>In this paper, simultaneous transmission on two orthogonal antenna polarizations in a polarization division multiplexing (PDM) fashion is studied for wideband satellite communication links using dual-polarization satellite receivers for the purpose of doubling the data rate. In order to mitigate the cross-polarization interference (XPI), a new digital blind and transparent XPI compensation method is proposed, coined as XPI correlation learning estimation and adaptive reduction (XPI-CLEAR). The received signal-to-noise-and-interference ratio (SNIR) and packet-error rate (PER) performance with this non-data-aided and non-decision-directed method is assessed in a comprehensively modelled XPI channel with effects such as depolarization due to atmospheric conditions, imperfect cross-polarization discrimination (XPD) of the antennas at the transmitter and the receiver, memory effects due to frequency selectivity of the XPD, and differential frequency offset (DFO) between the two channels. The application of the XPI-CLEAR method presents considerable energy efficiency improvements for all the studied XPI channel effects, and is particularly beneficial for higher order modulation. A low-complexity hardware implementation with symbol rates up to 500 MBaud validates the XPI-CLEAR method as a practical solution to increase the data rates of the satellite air interface and to achieve the doubling of the throughput of the satellite link by the use of PDM.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 6","pages":"481-492"},"PeriodicalIF":0.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1533","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deeper dive into interoperability and its implications for LunaNet communications and navigation services 深入了解互操作性及其对 LunaNet 通信和导航服务的影响
IF 1.7 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-08-13 DOI: 10.1002/sat.1531
James Schier, Coralí Roura, Phillip E. Paulsen, Karl Vaden, Jennifer Rock, Charles J. Sheehe, Angela Peura, Marc Seibert, Erica Lieb Weir
SummaryThe Artemis program being developed by the United States' (US) National Aeronautics and Space Administration (NASA) is advancing capabilities to return humans to the Moon and establish an initial base camp and associated infrastructure with extensive contributions from international and commercial partners. In planning for cislunar exploration and science missions, space agencies are collaborating to enable communications, networking, and Positioning, Navigation, and Timing (PNT) systems—called LunaNet—to exchange information and provide services to cislunar spacecraft and space systems, thus helping each other to achieve their shared goals. To achieve commonality and lower cost for mutual benefit, the strategy of interoperability is being adopted to help fit all the pieces together and function smoothly. Facilitating interoperability should benefit lunar missions by providing the ability to operate in a collaborative environment similar to the terrestrial Internet. Interoperability allows them to share information, navigate safely despite increasing radio frequency congestion, and follow common processes and procedures for effective joint operations. Unlike prior government‐dominated efforts, this ecosystem is expected to include and benefit for‐profit (commercial) businesses, non‐profit organizations, and academic institutions as active stakeholders. Ultimately, the goal is to enable a cislunar ecosystem of service providers and users to contribute to and/or utilize infrastructure and capabilities to achieve mission objectives that span the full range of human endeavors while supporting a variety of business models. This approach enables a Systems of Systems (SoS), such as a Network of Networks, to be sustainable in the context of the LunaNet ecosystem as systems evolve over time in technologies, standards, components, and user applications. This paper reports on the results of an effort to help frame the development of the international LunaNet architecture by providing a canonical definition of interoperability broad enough to meet these needs, examining architectural and operational implications of the definition, and exploring interoperability strategies and tactics to deploy and evolve the services proposed for cislunar exploration and science missions.
摘要美国国家航空航天局(NASA)正在开发的阿耳特弥斯(Artemis)计划正在推进人类重返月球的能力,并在国际和商业合作伙伴的广泛参与下建立一个初始基地营和相关基础设施。在规划半月形探索和科学任务时,各航天机构正在合作启用通信、网络以及定位、导航和定时(PNT)系统,即 "月球网",以交换信息并为半月形航天器和空间系统提供服务,从而帮助彼此实现共同目标。为了实现共性和降低成本,实现互惠互利,目前正在采取互操作性战略,以帮助将所有部件组装在一起并顺利运作。促进互操作性应有利于月球任务,因为它提供了在类似于地面互联网的协作环境中运行的能力。互操作性使他们能够共享信息,在无线电频率日益拥挤的情况下安全导航,并遵循共同的流程和程序进行有效的联合行动。与以往由政府主导的工作不同,这一生态系统预计将包括营利(商业)企业、非营利组织和学术机构等积极的利益相关者,并使他们从中受益。最终目标是建立一个由服务提供商和用户组成的半月形生态系统,使其能够为实现任务目标贡献和/或利用基础设施和能力,这些任务目标涵盖人类的所有活动,同时支持各种商业模式。随着系统在技术、标准、组件和用户应用方面的不断发展,这种方法使系统之系统(SoS)(如网络之网络)在 LunaNet 生态系统的背景下具有可持续性。本文报告了为帮助制定国际 LunaNet 体系结构而开展的一项工作的结果,该工作提供了一个足以满足这些需求的互操作性标准定义,研究了该定义在体系结构和操作方面的影响,并探讨了部署和发展为半月探测和科学任务提供的服务的互操作性战略和策略。
{"title":"Deeper dive into interoperability and its implications for LunaNet communications and navigation services","authors":"James Schier, Coralí Roura, Phillip E. Paulsen, Karl Vaden, Jennifer Rock, Charles J. Sheehe, Angela Peura, Marc Seibert, Erica Lieb Weir","doi":"10.1002/sat.1531","DOIUrl":"https://doi.org/10.1002/sat.1531","url":null,"abstract":"SummaryThe Artemis program being developed by the United States' (US) National Aeronautics and Space Administration (NASA) is advancing capabilities to return humans to the Moon and establish an initial base camp and associated infrastructure with extensive contributions from international and commercial partners. In planning for cislunar exploration and science missions, space agencies are collaborating to enable communications, networking, and Positioning, Navigation, and Timing (PNT) systems—called LunaNet—to exchange information and provide services to cislunar spacecraft and space systems, thus helping each other to achieve their shared goals. To achieve commonality and lower cost for mutual benefit, the strategy of interoperability is being adopted to help fit all the pieces together and function smoothly. Facilitating interoperability should benefit lunar missions by providing the ability to operate in a collaborative environment similar to the terrestrial Internet. Interoperability allows them to share information, navigate safely despite increasing radio frequency congestion, and follow common processes and procedures for effective joint operations. Unlike prior government‐dominated efforts, this ecosystem is expected to include and benefit for‐profit (commercial) businesses, non‐profit organizations, and academic institutions as active stakeholders. Ultimately, the goal is to enable a cislunar ecosystem of service providers and users to contribute to and/or utilize infrastructure and capabilities to achieve mission objectives that span the full range of human endeavors while supporting a variety of business models. This approach enables a Systems of Systems (SoS), such as a Network of Networks, to be sustainable in the context of the LunaNet ecosystem as systems evolve over time in technologies, standards, components, and user applications. This paper reports on the results of an effort to help frame the development of the international LunaNet architecture by providing a canonical definition of interoperability broad enough to meet these needs, examining architectural and operational implications of the definition, and exploring interoperability strategies and tactics to deploy and evolve the services proposed for cislunar exploration and science missions.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"52 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A decade of EHF scientific research: Unveiling insights from Alphasat Q/V‐band satellite communication experiments 超高频科学研究十年:揭开 Alphasat Q/V 波段卫星通信实验的神秘面纱
IF 1.7 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-07-25 DOI: 10.1002/sat.1532
Tommaso Rossi, Mauro De Sanctis, Ernestina Cianca, Giuseppe Codispoti, Giorgia Parca, Marina Ruggieri
SummaryIn 2008, the Italian Space Agency (ASI) consolidated its position on research and experiments regarding extremely high frequency (EHF) satellite communication through the proposal to the European Space Agency (ESA) of hosting a Q/V‐band experimental payload on board the Alphasat geostationary satellite. The latter large platform, launched in 2013, thus hosted the so‐called TDP#5 (Technology Demonstration Payload), aimed at performing the first Q/V‐band telecommunication and propagation experimental campaigns. Thanks to the precious contribution given to the definition of the overall mission and the scientific objectives, the payload was then renamed in memory of Professor Aldo Paraboni, pioneer of scientific research on EHF satellite propagation.Since 2014, a large number of satellite communication scientific experiments have been conducted by the University of Rome Tor Vergata, principal investigator for the ASI telecommunication campaign. Due to the excellent scientific results and the high reliability of the system, the experimental campaign is still ongoing. The main objective of the proposed telecommunication experiments is to demonstrate the feasibility of broadband satellite communications in Q/V band, optimizing and assessing, over‐the‐air, the performance of the indispensable adaptive transmission techniques. Moreover, the application of innovative paradigms related to software‐defined networking (SDN) and network functions virtualization (NFV) has been investigated in the framework of satellite systems exploiting beyond Ka‐band frequencies.The goal that drives this experimental activity is to provide to the academic community, manufacturers, and service providers useful tools to cope with Q/V‐band links for future satellite communication systems. The use of EHF links contributes to the reduction of RF front end and thus minimization of orbital junk; moreover, high throughput links in conjunction with software‐driven architectures enable a high level of system reconfigurability that is one of the pillars for a sustainable use of space.The paper presents the main results of the last 10 years of Q/V‐band experiments, as well as the plans and perspectives for future scientific and operational activities in a sustainable space framework.
摘要2008 年,意大利航天局向欧洲航天局(欧空局)提议在 Alphasat 地球静止卫星上搭载一个 Q/V 波段实验有效载荷,从而巩固了其在极高频卫星通信研究和实验方面的地位。2013年发射的Alphasat大型平台因此承载了所谓的TDP#5(技术演示有效载荷),旨在执行首次Q/V波段电信和传播实验活动。由于对整个任务和科学目标的定义做出了宝贵贡献,该有效载荷随后被重新命名,以纪念超高频卫星传播科学研究的先驱阿尔多-帕拉博尼(Aldo Paraboni)教授。由于出色的科学成果和系统的高可靠性,实验活动仍在继续。拟议的电信实验的主要目的是证明 Q/V 波段宽带卫星通信的可行性,优化和空中 评估不可或缺的自适应传输技术的性能。此外,还在利用 Ka 波段以外频率的卫星系统框架内研究了与软件定义网络(SDN)和网络功能虚拟化(NFV)有关的创新范例的应用。使用超高频链路有助于减少射频前端,从而最大限度地减少轨道垃圾;此外,高吞吐量链路与软件驱动架构相结合,可实现高水平的系统可重构性,而这正是可持续利用空间的支柱之一。本文介绍了过去十年 Q/V 波段实验的主要成果,以及在可持续空间框架内未来科学和业务活动的计划和前景。
{"title":"A decade of EHF scientific research: Unveiling insights from Alphasat Q/V‐band satellite communication experiments","authors":"Tommaso Rossi, Mauro De Sanctis, Ernestina Cianca, Giuseppe Codispoti, Giorgia Parca, Marina Ruggieri","doi":"10.1002/sat.1532","DOIUrl":"https://doi.org/10.1002/sat.1532","url":null,"abstract":"SummaryIn 2008, the Italian Space Agency (ASI) consolidated its position on research and experiments regarding extremely high frequency (EHF) satellite communication through the proposal to the European Space Agency (ESA) of hosting a Q/V‐band experimental payload on board the Alphasat geostationary satellite. The latter large platform, launched in 2013, thus hosted the so‐called TDP#5 (Technology Demonstration Payload), aimed at performing the first Q/V‐band telecommunication and propagation experimental campaigns. Thanks to the precious contribution given to the definition of the overall mission and the scientific objectives, the payload was then renamed in memory of Professor Aldo Paraboni, pioneer of scientific research on EHF satellite propagation.Since 2014, a large number of satellite communication scientific experiments have been conducted by the University of Rome Tor Vergata, principal investigator for the ASI telecommunication campaign. Due to the excellent scientific results and the high reliability of the system, the experimental campaign is still ongoing. The main objective of the proposed telecommunication experiments is to demonstrate the feasibility of broadband satellite communications in Q/V band, optimizing and assessing, over‐the‐air, the performance of the indispensable adaptive transmission techniques. Moreover, the application of innovative paradigms related to software‐defined networking (SDN) and network functions virtualization (NFV) has been investigated in the framework of satellite systems exploiting beyond Ka‐band frequencies.The goal that drives this experimental activity is to provide to the academic community, manufacturers, and service providers useful tools to cope with Q/V‐band links for future satellite communication systems. The use of EHF links contributes to the reduction of RF front end and thus minimization of orbital junk; moreover, high throughput links in conjunction with software‐driven architectures enable a high level of system reconfigurability that is one of the pillars for a sustainable use of space.The paper presents the main results of the last 10 years of Q/V‐band experiments, as well as the plans and perspectives for future scientific and operational activities in a sustainable space framework.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"11 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on a user terminal-assisted beam pointing measurement algorithm for very high-throughput satellite systems 超大吞吐量卫星系统用户终端辅助波束指向测量算法研究
IF 0.9 4区 计算机科学 Q3 ENGINEERING, AEROSPACE Pub Date : 2024-07-05 DOI: 10.1002/sat.1529
Kaiqiang Qi, Cheng Zhang, Yejun Zhou, Kang Liu

High-throughput satellites play an important role in emergency disaster relief, maritime, and other fields. A new generation of high-throughput satellites with large deployable antennas and broadband beamforming networks, namely, very high-throughput satellites (VHTS), is developing towards hundreds, even thousands of extremely narrow beams with Tbps capacity, which puts forward higher requirements for satellite pointing and system construction costs. In order to solve the problem that those traditional beam pointing measurement and calibration algorithms are difficult to apply or the performance is limited, this paper builds a service beam pointing measurement and calibration architecture. A user terminal-assisted beam pointing measurement algorithm based on the Gauss-Newton method is proposed for the general case, which can effectively reduce the construction cost of onboard and ground pointing measurement system, and improve the measurement accuracies of three axes of the satellite. Simulation results demonstrate the excellent performance under the ideal scenario. To achieve the future engineering application under the non-ideal scenario, the terminal positioning error can be first neglected, then the pattern processing error and the terminal signal measurement error must be reduced by decreasing the pattern sampling interval, increasing the number of participant terminals, and other means. By comparing with a traditional beam pointing measurement algorithm, the proposed algorithm can achieve much lower beam pointing error than the baseline.

摘要 高吞吐量卫星在紧急救灾、海事和其他领域发挥着重要作用。新一代高通量卫星,即超高通量卫星(VHTS),具有大型可部署天线和宽带波束成形网络,正在向数百甚至数千个具有 Tbps 容量的极窄波束方向发展,这对卫星指向和系统建设成本提出了更高的要求。为了解决传统波束指向测量和校准算法难以应用或性能有限的问题,本文构建了一种服务波束指向测量和校准架构。针对一般情况,提出了一种基于高斯-牛顿法的用户终端辅助波束指向测量算法,可有效降低星载和地面指向测量系统的建设成本,提高卫星三轴的测量精度。仿真结果表明了理想情况下的优异性能。要实现未来非理想情况下的工程应用,首先可以忽略终端定位误差,然后必须通过减小模式采样间隔、增加参与终端数量等手段减小模式处理误差和终端信号测量误差。与传统的光束指向测量算法相比,所提出的算法可以获得比基线低得多的光束指向误差。
{"title":"Study on a user terminal-assisted beam pointing measurement algorithm for very high-throughput satellite systems","authors":"Kaiqiang Qi,&nbsp;Cheng Zhang,&nbsp;Yejun Zhou,&nbsp;Kang Liu","doi":"10.1002/sat.1529","DOIUrl":"10.1002/sat.1529","url":null,"abstract":"<div>\u0000 \u0000 <p>High-throughput satellites play an important role in emergency disaster relief, maritime, and other fields. A new generation of high-throughput satellites with large deployable antennas and broadband beamforming networks, namely, very high-throughput satellites (VHTS), is developing towards hundreds, even thousands of extremely narrow beams with Tbps capacity, which puts forward higher requirements for satellite pointing and system construction costs. In order to solve the problem that those traditional beam pointing measurement and calibration algorithms are difficult to apply or the performance is limited, this paper builds a service beam pointing measurement and calibration architecture. A user terminal-assisted beam pointing measurement algorithm based on the Gauss-Newton method is proposed for the general case, which can effectively reduce the construction cost of onboard and ground pointing measurement system, and improve the measurement accuracies of three axes of the satellite. Simulation results demonstrate the excellent performance under the ideal scenario. To achieve the future engineering application under the non-ideal scenario, the terminal positioning error can be first neglected, then the pattern processing error and the terminal signal measurement error must be reduced by decreasing the pattern sampling interval, increasing the number of participant terminals, and other means. By comparing with a traditional beam pointing measurement algorithm, the proposed algorithm can achieve much lower beam pointing error than the baseline.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 6","pages":"444-460"},"PeriodicalIF":0.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Satellite Communications and Networking
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1