Eléa Thuilier, John Carey, Mary Dempsey, John Dingliana, Bryan Whelan, Attracta Brennan
{"title":"Virtual rehabilitation for patients with osteoporosis or other musculoskeletal disorders: a systematic review","authors":"Eléa Thuilier, John Carey, Mary Dempsey, John Dingliana, Bryan Whelan, Attracta Brennan","doi":"10.1007/s10055-024-00980-7","DOIUrl":null,"url":null,"abstract":"<p>This study aims to identify effective ways to design virtual rehabilitation to obtain physical improvement (e.g. balance and gait) and support engagement (i.e. motivation) for people with osteoporosis or other musculoskeletal disorders. Osteoporosis is a systemic skeletal disorder and is among the most prevalent diseases globally, affecting 0.5 billion adults. Despite the fact that the number of people with osteoporosis is similar to, or greater than those diagnosed with cardiovascular disease and dementia, osteoporosis does not receive the same recognition. Worldwide, osteoporosis causes 8.9 million fractures annually; it is associated with substantial pain, suffering, disability and increased mortality. The importance of physical therapy as a rehabilitation strategy to avoid osteoporosis fracture cannot be over-emphasised. However, the main rehabilitation challenges relate to engagement and participation. The use of virtual rehabilitation to address such challenges in the delivery of physical improvement is gaining in popularity. As there currently is a paucity of literature applying virtual rehabilitation to patients with osteoporosis, the authors broadened the search parameters to include articles relating to the virtual rehabilitation of other skeletal disorders (e.g. Ankylosing spondylitis, spinal cord injury, motor rehabilitation, etc.). This systematic review initially identified 130 titles, from which 23 articles (involving 539 participants) met all eligibility and selection criteria. Four groups of devices supporting virtual rehabilitation were identified: a head-mounted display, a balance board, a camera and more specific devices. Each device supported physical improvement (i.e. balance, muscle strength and gait) post-training. This review has shown that: (a) each device allowed improvement with different degrees of immersion, (b) the technology choice is dependent on the care need and (c) virtual rehabilitation can be equivalent to and enhance conventional therapy and potentially increase the patient’s engagement with physical therapy.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"49 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-00980-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to identify effective ways to design virtual rehabilitation to obtain physical improvement (e.g. balance and gait) and support engagement (i.e. motivation) for people with osteoporosis or other musculoskeletal disorders. Osteoporosis is a systemic skeletal disorder and is among the most prevalent diseases globally, affecting 0.5 billion adults. Despite the fact that the number of people with osteoporosis is similar to, or greater than those diagnosed with cardiovascular disease and dementia, osteoporosis does not receive the same recognition. Worldwide, osteoporosis causes 8.9 million fractures annually; it is associated with substantial pain, suffering, disability and increased mortality. The importance of physical therapy as a rehabilitation strategy to avoid osteoporosis fracture cannot be over-emphasised. However, the main rehabilitation challenges relate to engagement and participation. The use of virtual rehabilitation to address such challenges in the delivery of physical improvement is gaining in popularity. As there currently is a paucity of literature applying virtual rehabilitation to patients with osteoporosis, the authors broadened the search parameters to include articles relating to the virtual rehabilitation of other skeletal disorders (e.g. Ankylosing spondylitis, spinal cord injury, motor rehabilitation, etc.). This systematic review initially identified 130 titles, from which 23 articles (involving 539 participants) met all eligibility and selection criteria. Four groups of devices supporting virtual rehabilitation were identified: a head-mounted display, a balance board, a camera and more specific devices. Each device supported physical improvement (i.e. balance, muscle strength and gait) post-training. This review has shown that: (a) each device allowed improvement with different degrees of immersion, (b) the technology choice is dependent on the care need and (c) virtual rehabilitation can be equivalent to and enhance conventional therapy and potentially increase the patient’s engagement with physical therapy.
期刊介绍:
The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to:
Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications
Development and evaluation of systems, tools, techniques and software that advance the field, including:
Display technologies, including Head Mounted Displays, simulators and immersive displays
Haptic technologies, including novel devices, interaction and rendering
Interaction management, including gesture control, eye gaze, biosensors and wearables
Tracking technologies
VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling.
Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence
Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems
Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.