{"title":"A matter of connection: the importance of habitat networks for endangered butterflies in anthropogenic landscapes","authors":"Leonardo Ancillotto, Fabio Mosconi, Rocco Labadessa","doi":"10.1007/s11252-024-01542-0","DOIUrl":null,"url":null,"abstract":"<p>Cities are expanding at fast rates across the world, representing one of the main drivers of biodiversity loss due to habitat replacement. Nonetheless, urban and peri-urban areas often feature green spaces that may offer opportunities to wildlife and even represent safe havens for endangered species. Nonetheless, the key drivers that shape wildlife responses to urban landscapes, and in turn their ability to persist within cities, are far from being fully understood. Here we focus on an ecologically specialized butterfly, the endemic Italian festoon <i>Zerynthia cassandra</i>, as a model to assess how endangered species may survive in highly modified urban landscapes. The relatively low mobility and high host plant specialization make <i>Z. cassandra</i> an excellent target for studies in urban ecology, as they make the species able to exploit small suitable patches while at the same time potentially sensitive to habitat fragmentation and loss due to urbanization and land reclamation. We thus first document the relatively widespread occurrence of potentially suitable sites within two highly modified landscapes of central and southern Italy, with 25 and 35% of sites actually occupied by <i>Z. cassandra</i>. By modeling the probability of butterfly occurrence as a function of environmental characteristics, we found that <i>Z. cassandra</i> is strongly influenced by functional connectivity among suitable sites in urban landscapes, as well as by the abundance of <i>Aristolochia</i> host plants, and by the availability of profitable land cover classes in the immediate surroundings of potential oviposition sites. Our results indicate not only that networks of urban and peri-urban green spaces may host populations of protected and endangered species, but that management should also focus on the urban matrix in order to provide connecting corridors, as key assets to guarantee species persistence in cities.</p>","PeriodicalId":48869,"journal":{"name":"Urban Ecosystems","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11252-024-01542-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Cities are expanding at fast rates across the world, representing one of the main drivers of biodiversity loss due to habitat replacement. Nonetheless, urban and peri-urban areas often feature green spaces that may offer opportunities to wildlife and even represent safe havens for endangered species. Nonetheless, the key drivers that shape wildlife responses to urban landscapes, and in turn their ability to persist within cities, are far from being fully understood. Here we focus on an ecologically specialized butterfly, the endemic Italian festoon Zerynthia cassandra, as a model to assess how endangered species may survive in highly modified urban landscapes. The relatively low mobility and high host plant specialization make Z. cassandra an excellent target for studies in urban ecology, as they make the species able to exploit small suitable patches while at the same time potentially sensitive to habitat fragmentation and loss due to urbanization and land reclamation. We thus first document the relatively widespread occurrence of potentially suitable sites within two highly modified landscapes of central and southern Italy, with 25 and 35% of sites actually occupied by Z. cassandra. By modeling the probability of butterfly occurrence as a function of environmental characteristics, we found that Z. cassandra is strongly influenced by functional connectivity among suitable sites in urban landscapes, as well as by the abundance of Aristolochia host plants, and by the availability of profitable land cover classes in the immediate surroundings of potential oviposition sites. Our results indicate not only that networks of urban and peri-urban green spaces may host populations of protected and endangered species, but that management should also focus on the urban matrix in order to provide connecting corridors, as key assets to guarantee species persistence in cities.
期刊介绍:
Urban Ecosystems is an international journal devoted to scientific investigations of urban environments and the relationships between socioeconomic and ecological structures and processes in urban environments. The scope of the journal is broad, including interactions between urban ecosystems and associated suburban and rural environments. Contributions may span a range of specific subject areas as they may apply to urban environments: biodiversity, biogeochemistry, conservation biology, wildlife and fisheries management, ecosystem ecology, ecosystem services, environmental chemistry, hydrology, landscape architecture, meteorology and climate, policy, population biology, social and human ecology, soil science, and urban planning.