A Molecular Communication Perspective on Synchronization of Coupled Microfluidic-Spectroscopy

IF 3.7 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS IEEE Transactions on NanoBioscience Pub Date : 2024-04-02 DOI:10.1109/TNB.2024.3384082
Xuewen Qian;Stefan Angerbauer;Malcolm Egan;Marco Di Renzo;Werner Haselmayr
{"title":"A Molecular Communication Perspective on Synchronization of Coupled Microfluidic-Spectroscopy","authors":"Xuewen Qian;Stefan Angerbauer;Malcolm Egan;Marco Di Renzo;Werner Haselmayr","doi":"10.1109/TNB.2024.3384082","DOIUrl":null,"url":null,"abstract":"A challenge for real-time monitoring of biochemical processes, such as cells, is detection of biologically relevant molecules. This is due to the fact that spectroscopy methods for detection may perturb the cellular environment. One approach to overcome this problem is coupled microfluidic-spectroscopy, where a microfluidic output channel is introduced in order to observe biologically relevant molecules. This approach allows for non-passive spectroscopy methods, such as mass spectrometry, to identify the structure of molecules released by the cell. Due to the non-negligible length of the microfluidic channel, when a sequence of stimuli are applied to a cell it is not straightforward to determine which spectroscopy samples correspond to a given stimulus. In this paper, we propose a solution to this problem by taking a molecular communication (MC) perspective on the coupled microfluidic-spectroscopy system. In particular, assignment of samples to a stimulus is viewed as a synchronization problem. We develop two new algorithms for synchronization in this context and carry out a detailed theoretical and numerical study of their performance. Our results show improvements over maximum-likelihood synchronization algorithms in terms of detection performance when there are uncertainties in the composition of the microfluidic channel.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 3","pages":"458-471"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://ieeexplore.ieee.org/document/10488762/","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A challenge for real-time monitoring of biochemical processes, such as cells, is detection of biologically relevant molecules. This is due to the fact that spectroscopy methods for detection may perturb the cellular environment. One approach to overcome this problem is coupled microfluidic-spectroscopy, where a microfluidic output channel is introduced in order to observe biologically relevant molecules. This approach allows for non-passive spectroscopy methods, such as mass spectrometry, to identify the structure of molecules released by the cell. Due to the non-negligible length of the microfluidic channel, when a sequence of stimuli are applied to a cell it is not straightforward to determine which spectroscopy samples correspond to a given stimulus. In this paper, we propose a solution to this problem by taking a molecular communication (MC) perspective on the coupled microfluidic-spectroscopy system. In particular, assignment of samples to a stimulus is viewed as a synchronization problem. We develop two new algorithms for synchronization in this context and carry out a detailed theoretical and numerical study of their performance. Our results show improvements over maximum-likelihood synchronization algorithms in terms of detection performance when there are uncertainties in the composition of the microfluidic channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微流控光谱耦合同步的分子通讯视角
对细胞等生化过程进行实时监控的一个挑战是检测生物相关分子。这是因为光谱检测方法可能会扰乱细胞环境。克服这一问题的一种方法是微流体-光谱耦合技术,即引入微流体输出通道以观察生物相关分子。这种方法允许采用非被动光谱方法(如质谱法)来确定细胞释放的分子结构。由于微流体通道的长度不可忽略,当对细胞施加一连串刺激时,很难直接确定哪些光谱样本与特定刺激相对应。在本文中,我们从分子通讯(MC)的角度出发,提出了微流控光谱耦合系统的解决方案。特别是,将样本分配到刺激被视为一个同步问题。在此背景下,我们开发了两种新的同步算法,并对其性能进行了详细的理论和数值研究。我们的研究结果表明,当微流体通道的组成存在不确定性时,最大似然同步算法的检测性能比最大似然同步算法有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
期刊最新文献
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. "Galaxy" encoding: toward high storage density and low cost. 2024 Index IEEE Transactions on NanoBioscience Vol. 23 Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1