Till Hermann, Dariusz Niedziela, Diyora Salimova, Timo Schweiger
{"title":"Predicting the fiber orientation of injection molded components and the geometry influence with neural networks","authors":"Till Hermann, Dariusz Niedziela, Diyora Salimova, Timo Schweiger","doi":"10.1177/00219983241248216","DOIUrl":null,"url":null,"abstract":"The injection molding simulation of short fiber reinforced plastics (SFRP) is time consuming. However, until now it is necessary for predicting the local fiber orientation, to optimize the molding process and to predict the mechanical behavior of the material. This research presents the capabilities of artificial neural networks (NN) in predicting fiber orientation tensor (FOT) during injection molding processes, with a focus on enhancing computational efficiency compared to traditional simulation methods. Three NN architectures are compared based on simulated injection molded plates, with the goal of predicting the effect of the plate geometry on the local fiber orientation. Results indicate that NN outperform the baseline assumption of aligned fibers and demonstrate significant potential for accurate FOT prediction. The computational efficiency of NN, especially during the prediction phase, showcases a reduction in processing time by a factor of 10<jats:sup>4</jats:sup> compared to traditional simulation methods. This research lays a foundation for further exploration into the feasibility of NN in partly replacing time-consuming simulations for practical applications in injection molding processes.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"39 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241248216","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The injection molding simulation of short fiber reinforced plastics (SFRP) is time consuming. However, until now it is necessary for predicting the local fiber orientation, to optimize the molding process and to predict the mechanical behavior of the material. This research presents the capabilities of artificial neural networks (NN) in predicting fiber orientation tensor (FOT) during injection molding processes, with a focus on enhancing computational efficiency compared to traditional simulation methods. Three NN architectures are compared based on simulated injection molded plates, with the goal of predicting the effect of the plate geometry on the local fiber orientation. Results indicate that NN outperform the baseline assumption of aligned fibers and demonstrate significant potential for accurate FOT prediction. The computational efficiency of NN, especially during the prediction phase, showcases a reduction in processing time by a factor of 104 compared to traditional simulation methods. This research lays a foundation for further exploration into the feasibility of NN in partly replacing time-consuming simulations for practical applications in injection molding processes.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).