Novel Pyridyl Macrocyclic Triarylmethanes: Synthesis by Ring-closing Metathesis and Chemical Analysis

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC Current organic synthesis Pub Date : 2024-04-05 DOI:10.2174/0115701794249707230930113307
Ameni Hadj Mohamed, Corinne Coutant, Moncef Msaddek, Maité Sylla-Iyarreta Veitía
{"title":"Novel Pyridyl Macrocyclic Triarylmethanes: Synthesis by Ring-closing Metathesis and Chemical Analysis","authors":"Ameni Hadj Mohamed, Corinne Coutant, Moncef Msaddek, Maité Sylla-Iyarreta Veitía","doi":"10.2174/0115701794249707230930113307","DOIUrl":null,"url":null,"abstract":"Background:: Nowadays, macrocyclic compounds constitute a privileged source for the development of compounds with interesting biological properties. Ring-closing olefin me-tathesis has received great attention for the synthesis of small, medium, and larger ring systems. Methods:: In the present work, we described the synthesis of eight original pyridyl macrocyclic triarylmethanes using an efficient 3-step synthetic strategy. The bisalkylated 4,4'-(pyridin-X-ylmethylene) diphenols (X=2-4) were prepared by ring-closing metathesis as macrocyclization key step, using Grubbs second generation catalyst. Results:: The pyridyl macrocyclic triarylmethanes were obtained with moderate to good yields. The introduction of a pyridine N-oxide moiety before the macrocyclization proved to be interest-ing to afford a higher yield of the corresponding metathesis product. FT-IR, 1 H NMR, 13C NMR, and X-ray diffraction analysis have been used for the characterization of the synthesized compounds. Conclusion:: The synthetic strategy used here proposes an efficient alternative to prepare macro-cyclic triarylmethanes of different sizes.","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794249707230930113307","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background:: Nowadays, macrocyclic compounds constitute a privileged source for the development of compounds with interesting biological properties. Ring-closing olefin me-tathesis has received great attention for the synthesis of small, medium, and larger ring systems. Methods:: In the present work, we described the synthesis of eight original pyridyl macrocyclic triarylmethanes using an efficient 3-step synthetic strategy. The bisalkylated 4,4'-(pyridin-X-ylmethylene) diphenols (X=2-4) were prepared by ring-closing metathesis as macrocyclization key step, using Grubbs second generation catalyst. Results:: The pyridyl macrocyclic triarylmethanes were obtained with moderate to good yields. The introduction of a pyridine N-oxide moiety before the macrocyclization proved to be interest-ing to afford a higher yield of the corresponding metathesis product. FT-IR, 1 H NMR, 13C NMR, and X-ray diffraction analysis have been used for the characterization of the synthesized compounds. Conclusion:: The synthetic strategy used here proposes an efficient alternative to prepare macro-cyclic triarylmethanes of different sizes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型吡啶基大环三芳基甲烷:通过闭环 Metathesis 合成和化学分析
背景如今,大环化合物是开发具有有趣生物特性的化合物的重要来源。在合成小环、中环和大环系统方面,闭环烯烃甲基化反应备受关注。方法::在本研究中,我们采用高效的三步合成策略合成了 8 个原创的吡啶基大环三芳基甲烷。使用格拉布斯第二代催化剂,通过闭环偏析作为大环化关键步骤,制备了双烷基化的 4,4'-(吡啶-X-基亚甲基)二苯酚(X=2-4)。结果获得了中等至良好收率的吡啶基大环三芳基甲烷。事实证明,在大环化之前引入吡啶 N-氧化物分子,可以获得更高产率的相应偏合成产物。傅立叶变换红外光谱、1 H NMR、13C NMR 和 X 射线衍射分析被用于表征合成的化合物。结论本文采用的合成策略为制备不同尺寸的大环三芳基甲烷提供了一种有效的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
期刊最新文献
A Pharmacological Overview and Recent Patent of Triazine Scaffold in Drug Development: A Review Development of a Suitable Method for the Synthesis of New Thiadiazoles Using Hydrazonoyl Halides Synthesis of Heterocyclic Sulfonium Triflates by Cu-Catalyzed Selective Sarylation with Aryl(mesityl)iodonium Salts Co2(CO)8 as a CO-source for Pd-catalyzed Carbonylations: An Update Synthesis and Characterization of Novel Polythiadiazoles from Bis-hydrazonoyl Dichlorides and Bis-(methyl-2-arylidene hydrazone carbodithioates)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1