John Polhill, James A. Davis, Ken W. Smith, Eric Swartz
{"title":"Genuinely nonabelian partial difference sets","authors":"John Polhill, James A. Davis, Ken W. Smith, Eric Swartz","doi":"10.1002/jcd.21938","DOIUrl":null,"url":null,"abstract":"<p>Strongly regular graphs (SRGs) provide a fertile area of exploration in algebraic combinatorics, integrating techniques in graph theory, linear algebra, group theory, finite fields, finite geometry, and number theory. Of particular interest are those SRGs with a large automorphism group. If an automorphism group acts regularly (sharply transitively) on the vertices of the graph, then we may identify the graph with a subset of the group, a partial difference set (PDS), which allows us to apply techniques from group theory to examine the graph. Much of the work over the past four decades has concentrated on abelian PDSs using the powerful techniques of character theory. However, little work has been done on nonabelian PDSs. In this paper we point out the existence of <i>genuinely nonabelian</i> PDSs, that is, PDSs for parameter sets where a nonabelian group is the only possible regular automorphism group. We include methods for demonstrating that abelian PDSs are not possible for a particular set of parameters or for a particular SRG. Four infinite families of genuinely nonabelian PDSs are described, two of which—one arising from triangular graphs and one arising from Krein covers of complete graphs constructed by Godsil—are new. We also include a new nonabelian PDS found by computer search and present some possible future directions of research.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"32 7","pages":"351-370"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21938","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21938","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Strongly regular graphs (SRGs) provide a fertile area of exploration in algebraic combinatorics, integrating techniques in graph theory, linear algebra, group theory, finite fields, finite geometry, and number theory. Of particular interest are those SRGs with a large automorphism group. If an automorphism group acts regularly (sharply transitively) on the vertices of the graph, then we may identify the graph with a subset of the group, a partial difference set (PDS), which allows us to apply techniques from group theory to examine the graph. Much of the work over the past four decades has concentrated on abelian PDSs using the powerful techniques of character theory. However, little work has been done on nonabelian PDSs. In this paper we point out the existence of genuinely nonabelian PDSs, that is, PDSs for parameter sets where a nonabelian group is the only possible regular automorphism group. We include methods for demonstrating that abelian PDSs are not possible for a particular set of parameters or for a particular SRG. Four infinite families of genuinely nonabelian PDSs are described, two of which—one arising from triangular graphs and one arising from Krein covers of complete graphs constructed by Godsil—are new. We also include a new nonabelian PDS found by computer search and present some possible future directions of research.
期刊介绍:
The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including:
block designs, t-designs, pairwise balanced designs and group divisible designs
Latin squares, quasigroups, and related algebras
computational methods in design theory
construction methods
applications in computer science, experimental design theory, and coding theory
graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics
finite geometry and its relation with design theory.
algebraic aspects of design theory.
Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.