Biobased copoly(acetal-triazole)s with tunable degradable properties†

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Molecular Systems Design & Engineering Pub Date : 2024-04-10 DOI:10.1039/D4ME00005F
Joseph C. Daniels, Guery Saenz and Colleen N. Scott
{"title":"Biobased copoly(acetal-triazole)s with tunable degradable properties†","authors":"Joseph C. Daniels, Guery Saenz and Colleen N. Scott","doi":"10.1039/D4ME00005F","DOIUrl":null,"url":null,"abstract":"<p >Plastics are ubiquitous and essential to our society. Unfortunately, they contribute to environmental pollution due to their lack of degradation upon disposal. Here, we describe some model polymers that were used to demonstrate controlled degradation under environmental conditions (pH 7). The polymers were made from a 7 : 3 ratio of hydroquinone (<strong>HQA</strong>) and terephthalate (<strong>TPhA</strong>) alkyne derivatives with various amounts of polyethylene glycol (<strong>PEGAz</strong>) and acetal azides (<strong>AAz</strong>). Their structures were determined by <small><sup>1</sup></small>H NMR. The ratio of monomer units in the polymers was shown to be similar to the feed ratio. The polymers are amorphous with low glass transition temperatures (<em>T</em><small><sub>g</sub></small>). Furthermore, the polymer containing 1 : 1 ratio of PEG to acetal units was degraded in pH 5 and 7 buffer solutions over a 3 month period, whereas the polymer with only acetal group degraded at pH 5. Our results show that degradation can be controlled with different amounts of PEG and acetal groups.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 7","pages":" 744-753"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/me/d4me00005f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics are ubiquitous and essential to our society. Unfortunately, they contribute to environmental pollution due to their lack of degradation upon disposal. Here, we describe some model polymers that were used to demonstrate controlled degradation under environmental conditions (pH 7). The polymers were made from a 7 : 3 ratio of hydroquinone (HQA) and terephthalate (TPhA) alkyne derivatives with various amounts of polyethylene glycol (PEGAz) and acetal azides (AAz). Their structures were determined by 1H NMR. The ratio of monomer units in the polymers was shown to be similar to the feed ratio. The polymers are amorphous with low glass transition temperatures (Tg). Furthermore, the polymer containing 1 : 1 ratio of PEG to acetal units was degraded in pH 5 and 7 buffer solutions over a 3 month period, whereas the polymer with only acetal group degraded at pH 5. Our results show that degradation can be controlled with different amounts of PEG and acetal groups.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可调降解特性的生物基共聚(缩醛三唑
塑料无处不在,对我们的社会至关重要。遗憾的是,由于塑料在废弃后不能降解,因此造成了环境污染。在此,我们介绍一些模型聚合物,用于演示在环境条件(pH 值为 7)下的受控降解。这些聚合物由对苯二酚(HQA)和对苯二甲酸盐(TPhA)炔衍生物与不同量的聚乙二醇(PEGAz)和缩醛(AAz)叠氮化物按 7:3 的比例制成。它们的结构是通过 1H NMR 确定的。聚合物中单体单元的比例与进料比例相似。聚合物为无定形,玻璃化转变温度(Tg)较低。此外,含有 1:1 PEG 和缩醛单元比例的聚合物在 pH 值为 5 和 7 的缓冲溶液中降解了 3 个月,而只含有缩醛基团的聚合物在相同的时间内只在 pH 值为 5 的条件下降解。我们的研究结果表明,不同数量的 PEG 和缩醛基团可以控制降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
期刊最新文献
Back cover Back cover Dual responsive fluorescence switching of organohydrogel towards base/acid† Back cover Graph-based networks for accurate prediction of ground and excited state molecular properties from minimal features†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1