Production and Characterization of Electrodeposited Cadmium Sulfide Semiconductor Films with Different Boron Content

IF 1.5 4区 材料科学 Q3 Chemistry Crystal Research and Technology Pub Date : 2024-04-09 DOI:10.1002/crat.202300353
Erman Erdoğan
{"title":"Production and Characterization of Electrodeposited Cadmium Sulfide Semiconductor Films with Different Boron Content","authors":"Erman Erdoğan","doi":"10.1002/crat.202300353","DOIUrl":null,"url":null,"abstract":"<p>In this study, Cadmium Sulfide (CdS) semiconductor films are electrodeposited on Indium Tin Oxide (ITO) substrates at 80 °C base temperature for different boric acid (H<sub>3</sub>BO<sub>3</sub>) ratios. The effect of boric acid on these films is investigated. For this, first of all, the structural change of the films is examined. Among the films obtained with different boric acid ratios, the optimum film is achieved with 0.06 <span>m</span> boric acid doped. From the basic absorption spectra (αhʋ) of the obtained CdS:B films, the variation of hʋ is drawn and it is determined that the CdS:B semiconductor films has a direct band transition. From the basic absorption spectra of the obtained CdS:B films, it is observed that the CdS:B semiconductor films has a direct band transition. In addition, the optical energy bandgap values obtained are in agreement with the values in the available literatures. The results of the structural, optical, and morphological properties of the films produced in this study indicate that among the selected additive ratios, 1% boric acid gives the best and optimum deposition condition. The thin films obtained are also found to be useful as absorber layers in photovoltaic solar cells.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300353","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Cadmium Sulfide (CdS) semiconductor films are electrodeposited on Indium Tin Oxide (ITO) substrates at 80 °C base temperature for different boric acid (H3BO3) ratios. The effect of boric acid on these films is investigated. For this, first of all, the structural change of the films is examined. Among the films obtained with different boric acid ratios, the optimum film is achieved with 0.06 m boric acid doped. From the basic absorption spectra (αhʋ) of the obtained CdS:B films, the variation of hʋ is drawn and it is determined that the CdS:B semiconductor films has a direct band transition. From the basic absorption spectra of the obtained CdS:B films, it is observed that the CdS:B semiconductor films has a direct band transition. In addition, the optical energy bandgap values obtained are in agreement with the values in the available literatures. The results of the structural, optical, and morphological properties of the films produced in this study indicate that among the selected additive ratios, 1% boric acid gives the best and optimum deposition condition. The thin films obtained are also found to be useful as absorber layers in photovoltaic solar cells.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同硼含量的电沉积硫化镉半导体薄膜的制备与表征
在本研究中,硫化镉(CdS)半导体薄膜是在 80 °C 基底温度下,以不同的硼酸(H3BO3)比例电沉积在氧化铟锡(ITO)基底上的。研究了硼酸对这些薄膜的影响。为此,首先考察了薄膜的结构变化。在不同硼酸比例下获得的薄膜中,掺杂 0.06 m 硼酸的薄膜效果最佳。从所得到的 CdS:B 薄膜的基本吸收光谱(αhʋ)中可以得出 hʋ 的变化,并确定 CdS:B 半导体薄膜具有直接带跃迁。从得到的 CdS:B 薄膜的基本吸收光谱可以看出,CdS:B 半导体薄膜具有直接能带跃迁。此外,所获得的光能带隙值与现有文献中的值一致。本研究中生成的薄膜的结构、光学和形态特性结果表明,在所选的添加剂比例中,1% 的硼酸给出了最佳和最优的沉积条件。获得的薄膜还可用作光伏太阳能电池的吸收层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
期刊最新文献
Issue Information: Crystal Research and Technology 2'2025 Issue Information: Crystal Research and Technology 1'2025 Approaching Six Decades! Research Progress on Stability of FAPbI3 Perovskite Solar Cells Molecular Simulations of Stereocomplex Crystallization in Grafted Diblock Copolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1