Advanced Modeling and Optimization Strategies for Process Synthesis

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED Annual review of chemical and biomolecular engineering Pub Date : 2024-04-10 DOI:10.1146/annurev-chembioeng-100522-112139
Efstratios N. Pistikopoulos, Yuhe Tian
{"title":"Advanced Modeling and Optimization Strategies for Process Synthesis","authors":"Efstratios N. Pistikopoulos, Yuhe Tian","doi":"10.1146/annurev-chembioeng-100522-112139","DOIUrl":null,"url":null,"abstract":"This article provides a systematic review of recent progress in optimization-based process synthesis. First, we discuss multiscale modeling frameworks featuring targeting approaches, phenomena-based modeling, unit operation–based modeling, and hybrid modeling. Next, we present the expanded scope of process synthesis objectives, highlighting the considerations of sustainability and operability to assure cost-competitive production in an increasingly dynamic market with growing environmental awareness. Then, we review advances in optimization algorithms and tools, including emerging machine learning–and quantum computing–assisted approaches. We conclude by summarizing the advances in and perspectives for process synthesis strategies.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"32 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-100522-112139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides a systematic review of recent progress in optimization-based process synthesis. First, we discuss multiscale modeling frameworks featuring targeting approaches, phenomena-based modeling, unit operation–based modeling, and hybrid modeling. Next, we present the expanded scope of process synthesis objectives, highlighting the considerations of sustainability and operability to assure cost-competitive production in an increasingly dynamic market with growing environmental awareness. Then, we review advances in optimization algorithms and tools, including emerging machine learning–and quantum computing–assisted approaches. We conclude by summarizing the advances in and perspectives for process synthesis strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工艺合成的高级建模和优化策略
本文系统回顾了基于优化的过程合成的最新进展。首先,我们讨论了多尺度建模框架,包括目标方法、基于现象的建模、基于单元操作的建模和混合建模。接下来,我们介绍了工艺合成目标的扩展范围,重点考虑了可持续性和可操作性,以确保在环保意识日益增强的动态市场中,生产成本具有竞争力。然后,我们回顾了优化算法和工具的进展,包括新兴的机器学习和量子计算辅助方法。最后,我们总结了工艺合成策略的进展和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
期刊最新文献
Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Models for Decarbonization in the Chemical Industry. Introduction. Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids. Fluid Ejections in Nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1