A review on comprehending immunotherapeutic approaches inducing ferroptosis: Managing tumour immunity

IF 4.9 3区 医学 Q2 IMMUNOLOGY Immunology Pub Date : 2024-04-02 DOI:10.1111/imm.13789
Soumyadeep Chattopadhyay, Rudradeep Hazra, Arijit Mallick, Sakuntala Gayen, Souvik Roy
{"title":"A review on comprehending immunotherapeutic approaches inducing ferroptosis: Managing tumour immunity","authors":"Soumyadeep Chattopadhyay,&nbsp;Rudradeep Hazra,&nbsp;Arijit Mallick,&nbsp;Sakuntala Gayen,&nbsp;Souvik Roy","doi":"10.1111/imm.13789","DOIUrl":null,"url":null,"abstract":"<p>Ferroptosis, a necrotic, iron-dependent controlled cell death mechanism, is distinguished by the development of lipid peroxides to fatal proportions. Malignant tumours, influenced by iron to promote fast development, are vulnerable to ferroptosis. Based upon mounting evidence it has been observed that ferroptosis may be immunogenic and hence may complement immunotherapies. A new approach includes iron oxide-loaded nano-vaccines (IONVs), having supremacy for the traits of the tumour microenvironment (TME) to deliver specific antigens through improving the immunostimulatory capacity by molecular disintegration and reversible covalent bonds that target the tumour cells and induce ferroptosis. Apart from IONVs, another newer approach to induce ferroptosis in tumour cells is through oncolytic virus (OVs). One such oncolytic virus is the Newcastle Disease Virus (NDV), which can only multiply in cancer cells through the p53-SLC7A11-GPX4 pathway that leads to elevated levels of lipid peroxide and intracellular reactive oxygen species leading to the induction of ferroptosis that induce ferritinophagy.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"172 4","pages":"547-565"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imm.13789","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13789","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis, a necrotic, iron-dependent controlled cell death mechanism, is distinguished by the development of lipid peroxides to fatal proportions. Malignant tumours, influenced by iron to promote fast development, are vulnerable to ferroptosis. Based upon mounting evidence it has been observed that ferroptosis may be immunogenic and hence may complement immunotherapies. A new approach includes iron oxide-loaded nano-vaccines (IONVs), having supremacy for the traits of the tumour microenvironment (TME) to deliver specific antigens through improving the immunostimulatory capacity by molecular disintegration and reversible covalent bonds that target the tumour cells and induce ferroptosis. Apart from IONVs, another newer approach to induce ferroptosis in tumour cells is through oncolytic virus (OVs). One such oncolytic virus is the Newcastle Disease Virus (NDV), which can only multiply in cancer cells through the p53-SLC7A11-GPX4 pathway that leads to elevated levels of lipid peroxide and intracellular reactive oxygen species leading to the induction of ferroptosis that induce ferritinophagy.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综述诱导铁变态反应的免疫治疗方法:管理肿瘤免疫
铁中毒是一种坏死的、依赖于铁的受控细胞死亡机制,其特征是脂质过氧化物发展到致命的程度。恶性肿瘤受铁的影响而快速发展,很容易发生铁中毒。越来越多的证据表明,铁中毒可能具有免疫原性,因此可以补充免疫疗法。一种新的方法包括氧化铁载体纳米疫苗(IONVs),它通过分子分解和可逆共价键提高免疫刺激能力,靶向肿瘤细胞并诱导铁突变,在肿瘤微环境(TME)中传递特异性抗原方面具有优势。除了 IONVs 外,另一种诱导肿瘤细胞铁细胞减少的新方法是溶瘤病毒(OVs)。新城疫病毒(NDV)就是这样一种溶瘤病毒,它只能通过 p53-SLC7A11-GPX4 途径在癌细胞中繁殖,导致过氧化脂质和细胞内活性氧水平升高,从而诱导噬铁蛋白的铁氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunology
Immunology 医学-免疫学
CiteScore
11.90
自引率
1.60%
发文量
175
审稿时长
4-8 weeks
期刊介绍: Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers. Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology. The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.
期刊最新文献
IRF5 Controls Plasma Cell Generation and Antibody Production via Distinct Mechanisms Depending on the Antigenic Trigger. LGR4 Deficiency Aggravates Skin Inflammation and Epidermal Hyperplasia in Imiquimod-Induced Psoriasis. Featured Cover SNX17 Regulates Antigen Internalisation and Phagosomal Maturation by Dendritic Cells. Metabolic Regulation of Inflammation: Exploring the Potential Benefits of Itaconate in Autoimmune Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1