Towards a unifying framework for data-driven predictive control with quadratic regularization

Manuel Klädtke, Moritz Schulze Darup
{"title":"Towards a unifying framework for data-driven predictive control with quadratic regularization","authors":"Manuel Klädtke, Moritz Schulze Darup","doi":"arxiv-2404.02721","DOIUrl":null,"url":null,"abstract":"Data-driven predictive control (DPC) has recently gained popularity as an\nalternative to model predictive control (MPC). Amidst the surge in proposed DPC\nframeworks, upon closer inspection, many of these frameworks are more closely\nrelated (or perhaps even equivalent) to each other than it may first appear. We\nargue for a more formal characterization of these relationships so that results\ncan be freely transferred from one framework to another, rather than being\nuniquely attributed to a particular framework. We demonstrate this idea by\nexamining the connection between $\\gamma$-DDPC and the original DeePC\nformulation.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven predictive control (DPC) has recently gained popularity as an alternative to model predictive control (MPC). Amidst the surge in proposed DPC frameworks, upon closer inspection, many of these frameworks are more closely related (or perhaps even equivalent) to each other than it may first appear. We argue for a more formal characterization of these relationships so that results can be freely transferred from one framework to another, rather than being uniquely attributed to a particular framework. We demonstrate this idea by examining the connection between $\gamma$-DDPC and the original DeePC formulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用二次正则化实现数据驱动预测控制的统一框架
作为模型预测控制(MPC)的替代方案,数据驱动预测控制(DPC)最近大受欢迎。在提出的 DPC 框架激增的同时,仔细观察会发现,其中许多框架之间的关系(甚至可能是等同的)比最初看起来的更为密切。因此,我们需要对这些关系进行更正式的描述,以便将结果从一个框架自由地转移到另一个框架,而不是将其独特地归因于某个特定的框架。我们通过考察$\gamma$-DDPC与原始DeePC公式之间的联系来证明这一想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1