{"title":"R-VGAL: a sequential variational Bayes algorithm for generalised linear mixed models","authors":"Bao Anh Vu, David Gunawan, Andrew Zammit-Mangion","doi":"10.1007/s11222-024-10422-8","DOIUrl":null,"url":null,"abstract":"<p>Models with random effects, such as generalised linear mixed models (GLMMs), are often used for analysing clustered data. Parameter inference with these models is difficult because of the presence of cluster-specific random effects, which must be integrated out when evaluating the likelihood function. Here, we propose a sequential variational Bayes algorithm, called Recursive Variational Gaussian Approximation for Latent variable models (R-VGAL), for estimating parameters in GLMMs. The R-VGAL algorithm operates on the data sequentially, requires only a single pass through the data, and can provide parameter updates as new data are collected without the need of re-processing the previous data. At each update, the R-VGAL algorithm requires the gradient and Hessian of a “partial” log-likelihood function evaluated at the new observation, which are generally not available in closed form for GLMMs. To circumvent this issue, we propose using an importance-sampling-based approach for estimating the gradient and Hessian via Fisher’s and Louis’ identities. We find that R-VGAL can be unstable when traversing the first few data points, but that this issue can be mitigated by introducing a damping factor in the initial steps of the algorithm. Through illustrations on both simulated and real datasets, we show that R-VGAL provides good approximations to posterior distributions, that it can be made robust through damping, and that it is computationally efficient.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10422-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Models with random effects, such as generalised linear mixed models (GLMMs), are often used for analysing clustered data. Parameter inference with these models is difficult because of the presence of cluster-specific random effects, which must be integrated out when evaluating the likelihood function. Here, we propose a sequential variational Bayes algorithm, called Recursive Variational Gaussian Approximation for Latent variable models (R-VGAL), for estimating parameters in GLMMs. The R-VGAL algorithm operates on the data sequentially, requires only a single pass through the data, and can provide parameter updates as new data are collected without the need of re-processing the previous data. At each update, the R-VGAL algorithm requires the gradient and Hessian of a “partial” log-likelihood function evaluated at the new observation, which are generally not available in closed form for GLMMs. To circumvent this issue, we propose using an importance-sampling-based approach for estimating the gradient and Hessian via Fisher’s and Louis’ identities. We find that R-VGAL can be unstable when traversing the first few data points, but that this issue can be mitigated by introducing a damping factor in the initial steps of the algorithm. Through illustrations on both simulated and real datasets, we show that R-VGAL provides good approximations to posterior distributions, that it can be made robust through damping, and that it is computationally efficient.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.